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A weakly nonlinear analysis of the downstream evolution of weakly unstable distur-
bances in a stably stratified mixing layer with a large Reynolds number is carried out.
No other requirements are imposed upon velocity and density profiles, thus making
it possible to overcome the restrictions placed in earlier studies (Brown & Stewartson
1978; Brown et al. 1981; Churilov & Shukhman 1987, 1988) by a particular choice
of weakly supercritical flow models assuming symmetry. For each of the two critical
layer regimes possible here, viscous and unsteady, evolution equations are obtained,
their solutions and competition between nonlinearities in the course of instability
development are analysed, and evolution scenarios for unstable disturbances are con-
structed for different levels of their supercriticality. It is established that the regime
with a nonlinear critical layer does not arise in an evolutionary manner, except for
the previously studied case of a weak stratification (Shukhman & Churilov 1997). It
is shown that while in the viscous critical layer regime the relaxation of assumptions
of the symmetry and weak supercriticality of the flow produces no fundamental
changes in the theory, in the unsteady critical layer regime a new (non-dissipative
cubic) nonlinearity appears which governs the instability development on equal terms
with two already known nonlinearities. Results are illustrated by calculations for two
families of flow models with a controlled degree of asymmetry.

1. Introduction
From the physical point of view, in free high-Reynolds-number shear flows the

initiation of an instability and its development are both conditioned by the resonant
wave–flow interaction (Andronov & Fabrikant 1979; Timofeev 1970, 1989) in the
neighbourhood of a critical level y = yc, i.e. the surface on which the flow velocity
vx = u(y) coincides with the phase velocity of the wave c. Technically, the major
research tool is weakly nonlinear theory which can work only at small amplitudes and
near the stability boundary where growth rates are small, and an unstable disturbance
may be represented as a slightly modified neutral mode. With small disturbance
amplitudes and supercriticality, the resonance region, the so-called critical layer (CL)
enclosing the surface y = yc, is narrow. But it is here where the most interesting and
important things happen, including the main nonlinear processes, and the narrowness
of the CL plays, for theory, a key role.

Indeed, a disturbance of even a small amplitude is capable of dramatically re-
structuring the flow inside such a CL, and this, in turn, radically affects the course
of its evolution. Such an interaction results in the formation of highly non-trivial
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evolution scenarios. Furthermore, because the main processes are localized inside the
CL, nonlinear analysis is greatly simplified, and its results are nearly insensitive to the
flow structure as a whole and, in this sense, universal, suitable for a broad class of
flows; at the same time, however, they essentially depend on its local characteristics
on a critical level.

With such a combination of the properties, the question of the robustness of the
flow model chosen to be used in research, i.e. the question of how much results will be
altered by a small variance of the model, becomes very important. This is especially
true in regard to cases where the chosen model possesses some symmetry.

Since the CL plays a key role in the theory, it is important that the number of CLs
must be a robust characteristic of the model. This requirement is satisfied in flows
like a mixing layer where the velocity profile is monotonic and therefore there is a
single CL. It is such flows that will be the subject of our treatment.

In the simplest case of a homogeneous mixing layer of incompressible fluid one
could expect that the choice of the model (the velocity profile u(y)) should not be
of substantial significance because the critical level necessarily coincides with the
inflection point (maximum vorticity), u′′c ≡ u′′(yc) = 0, and by Fjørtoft’s theorem (see
e.g. Drazin & Reid 1981), u′cu′′′c < 0, i.e. the behaviour of u(y) on a critical level
is qualitatively the same for all flows which justifies to some extent the researchers’
predilection for symmetric models in which u(y) = u0 + U(y) with U(−y) = −U(y)
(most often U(y) = tanh y). Moreover, in all mixing layers, both with and without
symmetry, the instability development proceeds qualitatively identically, differing
only by minor details (see, for example, Goldstein & Hultgren 1988 and Churilov
& Shukhman 1996). But the nonlinear evolution equation in the general case is
structured in a manner quite different than in the particular case of a symmetric flow
(cf. (2.34) and (2.32) in Churilov & Shukhman 1996); therefore, symmetric models are
structurally unstable, and studying them alone can lead (and has led) to erroneous
generalizations.

Another example is the weakly supercritical mixing layer u = tanh y on the β-plane
(Churilov 1989). Here, the CL coincides with max u′′(y) (i.e. u′′′c = 0, and uiv

c < 0) and is
not at the symmetry centre of the flow model, owing to which even a symmetric model
proves to be robust, and the evolution equation obtained for it becomes universal
(see § 2.1 in Churilov & Shukhman 1996). In the case of the differential rotation of
an incompressible fluid we have a similar situation (Shukhman 1989).

We now turn to the subject of this paper, namely stratified flows. Stratification,
while being a very important factor for geophysical and astrophysical hydrodynamics,
adds considerable complexity to the problem. Hence it comes as no surprise that, so
far as is known to the author, all analytic studies on nonlinear stability of flows with
finite continuous stratification employed symmetric models and, more commonly,
Drazin’s (1958) model

u = u0 + tanh y, N2(y) ≡ −g0ρ
′
0(y)/ρ0(y) = J = const, (1.1)

and Holmboe’s (1960) model

u = u0 + tanh y, N2(y) = J/cosh2 y. (1.2)

Here ρ0(y) is the density profile, g0 is gravity acceleration, and the prime denotes the
derivative with respect to the vertical coordinate y.

A distinguishing characteristic of such models is that the critical level lies in the
symmetry plane, i.e. it coincides with the inflection point, as well as with extrema
of N2(y) and of the Richardson number R(y) = N2(y)/[u′(y)]2. But, as shown by
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Hazel (1972), in the general case, in the presence of a stratification the critical level
ceases to be related to the maximum of vorticity (the inflection point), and also it
does not coincide with extrema of N2(y) and R(y). Thus, in a stratified mixing layer
there is increasingly less reason to expect that the symmetric model will be robust
compared with a homogeneous layer. It is also good to bear in mind that, even in
symmetric models, only weakly supercritical flows have been studied to date, in which
Rc ≡ R(yc) ≈ 1

4
, and instability is almost totally suppressed by stratification (Brown

& Stewartson 1978; Brown, Rosen & Maslowe 1981; Churilov & Shukhman 1987,
1988). Another limiting case, a weakly stratified (Rc � 1) mixing layer, was also
considered, but with an arbitrary velocity profile in this case (Shukhman & Churilov
1997).

The objective of this paper is to study the nonlinear evolution of weakly unstable
disturbances in a stably stratified (N2 > 0) mixing layer (u′ > 0) virtually without
imposing any other limitations on the velocity and density profile. This will make it
possible to construct a unified theory for a wide variety of mixing layers with any
degree of stratification, from weak to critical, and to see to what extent symmetric
models represent correctly the general properties and what their demerits are.

It is clear that in the general case the spectrum of unstable disturbances will be
wide (it is narrow in weakly supercritical flows only); therefore, it is necessary to
have a mechanism for selecting weakly unstable modes from this wide spectrum.
It will be assumed that the required disturbance is produced, as is often done in
laboratory experiments, far upstream by an external source with a suitably chosen
frequency and develops as it moves downstream (spatial evolution problem). Of
course, the mechanism suggested and studied in detail in a homogeneous mixing
layer by Goldstein & Hultgren (1988) and Hultgren (1992) appears to be more
natural and attractive: the mode that initially has the largest growth rate reaches
the stability boundary because of the viscous spreading of the velocity profile. In a
stratified medium, however, the processes of dissipative spreading of the velocity and
density profiles act upon the spectrum of unstable modes in a not so simple way, and
such a problem statement must be preceded by a specially designed investigation.

In a stratified flow, the neutral mode is singular: when y = yc its linearized stream
function ψ = Ag(y) eik(x−ct) (with the amplitude A and the wavenumber k) has a
branch point,

g(y) = (y − yc)α[1 + a1(y − yc) + a2(y − yc)2 + · · ·], α(1− α) = Rc.

Hence the evolution scenario for unstable disturbances is fast (Churilov & Shukhman
1992): their development, depending on the amplitude and supercriticality (measured
by the linear growth rate γL), proceeds in the regime of either viscous or unsteady
CL (with an explosive growth up to A = O(1) in the latter), and the nonlinear CL
regime cannot be realized in the process of evolution (except for the case of a weak
stratification α � 1, Shukhman & Churilov 1997). It should be recalled that the CL
will be viscous, unsteady or nonlinear according to which scale

lν = ν1/3, lt = |A|−1d|A|/ds, lN = |A|1/(2−α), (1.3)

viscous lν , unsteady lt or nonlinear lN , is largest, and in the evolution process lt and
lN vary, so transitions from one CL regime to another are possible. Here ν is the
reciprocal of the Reynolds number, and s is the evolution variable (time or coordinate
downstream).

In the viscous CL regime, the instability development is described by the Landau–
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Stuart–Watson equation

dA

ds
= γLA+

b1(Pr − 1)

νσ
Rc|A|2A, Re b1 > 0, (1.4)

with σ = 1 and Im b1 = 0 in the case of symmetric weakly supercritical (Rc ≈ 1
4
)

flows (Brown et al. 1981; Churilov & Shukhman 1987) and σ = 5
3

in the case of a
weak stratification (α � 1, Shukhman & Churilov 1997). The evolution behaviour,
as is easy to see, depends substantially on the Prandtl number Pr : when Pr < 1 the
stabilization occurs at the level

|A| = A1 = O[(γLν
σ/Rc)

1/2],

and when Pr > 1 we have an acceleration of the growth to an explosive one,

|A| ∼ (s1 − s)−1/2 (1.5)

and the subsequent transition to the unsteady CL regime where the growth is also an
explosive one

|A| ∼ (s0 − s)−a, a > 0, (1.6)

but with different parameters.
It will be shown that in the general case the instability development in the viscous

CL regime is also described by equation (1.4), and the presence or absence of the
symmetry does not tangibly affect its structure, and a dependence of σ on α will be
determined.

In the unsteady CL regime, the nonlinearity in the evolution equation has a char-
acteristic non-local structure which was first found by Hickernell (1984). Churilov &
Shukhman (1988, hereafter referred to as Paper I) showed that in weakly supercrit-
ical symmetric flows two main nonlinearities compete, namely the dissipative cubic
nonlinearity which is a continuation of the nonlinearity in (1.4) into the domain of
parameters corresponding to the unsteady CL regime, and the quintic in amplitude
non-dissipative nonlinearity. Under the action of any one of them, the disturbance
growth necessarily reaches the explosive stage (1.6), and only the parameters s0 and
a will be different. In the limit of a weak stratification (Rc � 1), of these two nonlin-
earities only a single, dissipative, nonlinearity survives. As will be shown, the reason
is in different degree of their attenuation when Rc → 0: the dissipative nonlinear term
is proportional to Rc, and the non-dissipative term is proportional to R2

c .
The main result of the relaxation of the flow symmetry assumption is the ap-

pearance of a third, non-dissipative cubic nonlinearity which controls the instability
development on equal terms with the two above-mentioned nonlinearities. Its role
is particularly important in the case of an intermediate stratification when α 6 1

4

(Rc 6
3
16

). This nonlinearity also accelerates the disturbance growth to an explosive
one, and the respective term in the evolution equation has a similar non-local structure
typical for the unsteady CL regime and is proportional to the parameter

Q =

[
u′′

u′
− α (N2)′

N2

]
y=yc

, (1.7)

which in symmetric flows goes to zero.
The problem is solved by the method of matched asymptotic expansions (of

solutions outside and inside the CL). In § 2, it is stated in detail, the necessary
information from linear stability theory is given, the inner (y → yc) asymptotic
expansion of the outer solution is calculated, and a modified solvability condition
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forming the basis for the future nonlinear evolution equation is derived. Three main
(in the unsteady CL regime) nonlinear contributions to this equation are calculated
in § 3; corresponding scalings are determined, and particular (for the individual
nonlinearities) evolution equations are obtained, as well as the evolution equation
for the viscous CL regime. Section 4 gives a description of the evolution of unstable
disturbances in the unsteady CL regime, and results obtained are discussed in § 5.

In Appendix A, the solution of the equation basic to the inner problem is considered,
and unwieldy kernels of the evolution equations are written in Appendix B.† Appendix
C contains some details of calculations of the quintic nonlinearity. Finally, Appendix
D is devoted to the study of some properties of the nonlinear evolution equations in
the unsteady CL regime.

2. Problem statement and outer solution
2.1. Selection of the model and input equations

Let us consider plane-parallel free shear flows of stratified incompressible fluid with

vx = u(y) and N2(y) = Jr(y).

These are mixing-layer-type flows without counterflow (i.e. u(y) is positive and mono-
tonic; for definiteness, it will be assumed that u′(y) > 0), stably stratified (r(y) > 0),
and the scale of variation of r(y) is of the same order of magnitude or larger than the
scale d of velocity variation. To exclude internal gravity waves from consideration, it
is assumed that r(y) → 0 when y → ±∞. Otherwise u(y) and r(y) are arbitrary. All
quantities are made dimensionless using the scale d, the flow velocity half-difference
and the typical value of |ρ′0| as units.

The local Richardson number is

R(y) = Jr(y)/[u′(y)]2. (2.1)

Thus, the parameter J > 0 determines the degree of flow stratification, and by
varying this parameter (with u(y) and r(y) fixed), it is possible to pass along the
stability boundary from Rc ≈ 0 to Rc = 1

4
. We are reminded that the prime denotes

the derivative with respect to y, and the subscript c means that the quantity is
calculated at y = yc.

The dynamics of two-dimensional disturbances in the Boussinesq approximation is
governed by the equations

∂

∂t
∆ψ + u

∂

∂x
∆ψ − u′′ ∂ψ

∂x
− J ∂ρ

∂x
+ {∆ψ, ψ} = ν∆2ψ,

∂ρ

∂t
+ u

∂ρ

∂x
+ r

∂ψ

∂x
+ {ρ, ψ} =

ν

Pr
∆ρ,

 (2.2)

where ψ and ρ are the pertubations of the stream function and density, ν is the recip-
rocal of the Reynolds number, Pr is the Prandtl number, {a, b} = (∂a/∂x) (∂b/∂y)−
(∂a/∂y) (∂b/∂x) and ∆ = ∂2/∂x2 + ∂2/∂y2.

We shall consider the spatial evolution downstream of weakly supercritical dis-
turbances of a small amplitude produced at x = −∞ by an external source with a
frequency ω differing little from the neutral mode frequency ωN which bounds (at a

† Appendix B is available from the Journal of Fluid Mechanics Editorial Office.
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given J) the instability region:

|ω − ωN | � ωN.

With such a problem statement, it is necessary to impose the boundary conditions

ψ → 0, ρ→ 0 as x→ −∞. (2.3)

2.2. Linear theory

In a linear approximation, ψ ∼ exp [ik(x − ct)] and satisfies the Taylor–Goldstein
equation:

d2ψ

dy2
+

[
Jr

(u− c)2
− u′′

u− c − k
2

]
ψ = 0; |ψ| < ∞ as y → ±∞, (2.4)

where k = ω/c, and the phase velocity c = c(ω, J) is the (complex in the general case)
eigenvalue of the problem (2.4). Our interest is in the solutions of (2.4) on the stability
boundary (Im c = 0+), the so-called neutral modes, as well as in its vicinity where
disturbances are weakly unstable (0 < Im c � 1). This subject is treated extensively
in the literature (see, for example, Drazin & Reid 1981); among the references, of
greatest utility to us are the publications of Miles (1961, 1963) who analysed in detail
the neutral mode properties, Thorpe (1969) who constructed a broad class of analytic
neutral solutions (2.4), and Hazel (1972) who studied the stability of asymmetric flows
and their difference from symmetric flows.

In a homogeneous (J = 0) mixing layer, the modes are unstable in the interval
0 < ω < ω0. The eigenfunction g(y) of the neutral mode corresponding to ω0 (as
well as the value of ω0 itself) can be determined only by solving (2.4); it is known,
however, that it has no zeros and is regular at a critical level, coincident with the
inflection point u′′c = 0. It is usual to normalize it with the condition g(yc) = 1, so that

g(y) = 1 + a1(y − yc) + a2(y − yc)2 + · · · . (2.5a)

On the other hand, when ω = 0, in the general case yc does not coincide with the
inflection point, and the neutral mode has an ordinary zero:

g(y) ≡ (u− c)/u′c = y − yc +
u′′c
2u′c

(y − yc)2 + · · · ; c = lim
ω→0

c(ω). (2.5b)

Stratification affects both the unstable mode spectrum and the neutral mode proper-
ties. Neutral modes become singular: when y → yc

g(y) = (y − yc)α[1 + a1(y − yc) + · · ·], α(1− α) = Rc,

a1 =
1

2α

[
(1 + Rc)

u′′c
u′c
− Rc r

′
c

rc

]
 (2.6)

(because u′c > 0, g(y) should be continued analytically from y > yc into the lower
half-plane of complex y). The stability boundary (neutral curve) on the (ω, J)-plane
in the simplest cases has the form of an arc which connects the points (0, 0) and
(ω0, 0) bounding the instability region in a homogeneous flow, and the exponent α
varies monotonically along it taking, in accordance with (2.5a, b), the values α = 1
at the left-hand end and α = 0 at the right-hand end (see figure 1). The instability
region lies under the neutral curve.
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Figure 1. Stability boundary, and the α(ω) dependence for Holmboe’s model (1.2) with
u0 = 1 : J = ω(1− ω), α = 1− ω.
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Figure 2. The arrangement of model flows (2.7a) and (2.7b) for different values of the asymmetry
parameter D: (a) the velocity profile (the same for both models); (b) the density profile for (2.7b)
(the dashed line is for (2.7a) and Holmboe’s model); (c) and (d ) the relative Richardson number
profiles for (2.7a) and (2.7b) respectively (dashed lines are for Holmboe’s model).

To gain greater insight into the influence of the flow asymmetry and have particular
examples to illustrate results of the theory under development, we shall use two
families of models:

u(y) = 1 + tanh y + D/cosh2 y, r(y) = cosh−2 y (2.7a)

and

u(y) = 1 + tanh y + D/cosh2 y, r(y) = (1 + 2D tanh y)/cosh2 y. (2.7b)

Their main features are shown in figure 2. The degree of asymmetry is controlled by
the parameter D. When D = 0 both models transform to the symmetric Holmboe’s
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Figure 3. Variation of neutral mode parameters along the stability boundary: (a) model (2.7a),
(b) model (2.7b). Curve 1, D = 0.1; 2, D = 0.3; 3, D = 0.5; 4, D = 0.49.

model (1.2) with u0 = 1, where along the whole length of the stability boundary
c = u0 = 1, while the critical level yc, the inflection point on the velocity profile, a
maximum of N2(y) and a minimum of the Richardson number (see (2.1)) coincide
and lie on y = 0. When D increases (in the range |D| 6 1

2
lest the monotonicity

of u(y) be violated), the inflection point shifts to the left, and a maximum of r(y)
in the model (2.7b) shifts to the right (figure 2). For D 6= 0 neutral modes and
their parameters were calculated numerically. Figure 3 shows that the phase velocity
c (and also yc) varies not only with a change of D but also along the stability
boundary.

With increasing asymmetry D, the stability boundary itself is distorted (see figure
4, dashes indicate points where Rc reaches the maximum value 1

4
) but its ‘height’

remains finite, so that for any |D| 6 1
2

there exists a value of the parameter J =
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Figure 5. Marginally stable flows: Jcr, R̃m = minR(y)− 1
4

and R̃c = Rc − 1
4

versus D:
(a) model (2.7a), (b) model (2.7b).

Jcr = maxω J(ω), at which the flow loses its stability. The symmetric Drazin’s and
Holmboe’s models become unstable once an arbitrarily narrow region appears in the
flow, where R(y) < 1

4
, and the first marginal mode has Rc = minR(y) = 1

4
(i.e. α = 1

2
).

Asymmetric flows, as established by Hazel (1972), even if they have a layer of a finite
thickness with R(y) < 1

4
, can remain stable, and Rc of the first marginal mode does
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not coincide either with 1
4

or with Rm = minR(y). Figure 5 shows, along with Jcr and
Rm, Rc of the first marginal mode as function of D. It is seen that when D 6= 0 Rm
and Rc are less than 1

4
(it is interesting to note that α > 1

2
in this case); however, as

in Hazel’s (1972) calculations, the value of Rm does not drop below 0.2.

It should be noted that there are flows with a more complicated arrangement of
the stability boundary where there are several neutral curves (see, for example, Miles
1963, as well as Drazin & Reid 1981), each of them not necessarily part of the stability
boundary. Our intention here, however, does not involve analysing all possibilities –
we need only have knowledge of the fact of the existence of the stability boundary
and the presence of weakly unstable modes in its vicinity.

2.3. Instability and outer solution

By retreating slightly from the point (ωN, JN) on the neutral curve toward the
instability region, we reach the weakly unstable mode whose development from a
very small amplitude A right up to A = O(1) can be investigated using perturbation
theory. It is convenient to introduce the small parameters ε and µ characterizing the
amplitude and supercriticality, as well as the designations

ξ = µx, y − yc = µY , ω = ωN + µΩ, J = JN + µJ1. (2.8)

Recall that we will be studying largely the unsteady CL regime, which does specify
the scaling of the inner variable Y ; the inequality ν � µ3 should also be satisfied.
The relation between ε and µ depends upon which of the nonlinearities is the main
one in the region of problem parameters considered; this issue will be taken up later
in the text, in § 3.

The solution of equations (2.2) is constructed by the method of matched asymptotic
expansions: first we find the solutions outside and inside the CL in the form of
expansions in powers of ε and µ; after that, they are matched in each order. Matching
gives a nonlinear evolution equation as the compatibility condition. Since this is a
standard procedure, we examine briefly the main points only.

We construct the outer solution in the form of an expansion

ψ = [(εψ(1)
1 +εµψ(2)

1 +ενψ(3)
1 )ei(kx−ωt)+ε2ψ(1)

2 e2i(kx−ωt)+· · ·+ c.c.]+ε2ψ(1)
0 +· · · (2.9)

and a corresponding expansion for ρ. Here the subscript and the superscript
correspond, respectively, to the harmonic number and the iteration number, and
c.c. represents the complex conjugates of the terms. The main part of the outer
solution

ψ
(1)
1 = A(ξ)g(y), ρ

(1)
1 = − r(y)

u− cψ
(1)
1 ,

is proportional to the neutral eigenfunction g(y) of the (homogeneous) problem (2.4)
with ω = ωN and J = JN . The other expansion terms represent corrections for
supercriticality (and the evolution caused by it), dissipation and nonlinearity. Being
the general solution of a non-homogeneous equation, each of these terms includes
the solution of the corresponding homogeneous equation with an arbitrary coefficient
which will be denoted by b with appropriate indices. We do not show the calculations
here (differing little from those done in Paper I and in many other publications) and
give only the result for the inner (when y → yc) expansion of the fundamental (first)
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and second harmonics of the outer solution†:

ψ1 =εµα
[
AY α− αȦ

ku′c
Y α−1+· · ·

]
+εµα+1

{
A

2α

[
(1+Rc)

u′′c
u′c
−Rc r

′
c

rc

]
Y α+1

+

[
Rc

ku′c
Ȧ

(
r′c
rc
−2

u′′c
u′c

)
+R1A

]
Y α lnY

1−2α

}
+ενµα−3 iRc

6 Pr ku′c
[(3−α)Pr+1−α]AY α−3

+εµ2−α f±

1− 2α
Y 1−α + λ1b

±
1 Y

α + · · · , (2.10)

ϕ1 = εµα+1

{
QA

2α
Y α+1 −

[
(1− α)(1 + 2α)

QȦ

ku′c
− 2R1A

]
Y α

2α(1− 2α)

}

+ενµα−3 iRc(Pr − 1)

2Pr ku′c
AY α−3 + εµ2−α f±

1− αY
1−α + · · · , (2.11)

ψ2 = ε2µ2α−2 A2

2(2−α)u′c

{
αY 2α−2+

µY 2α−1

2−3α

[
(4−3α−5α2+3α3)

u′′c
u′c
−(4−3α)Rc

r′c
rc

]}

+λ2b
±
2 (µαq±Y α + µ1−αY 1−α) + · · · , (2.12)

ϕ2 = −ε2µ2α−1 αQA2

2(2− α)(2− 3α)u′c
Y 2α−1 + λ2µ

1−α 1− 2α

1− α b
±
2 Y

1−α + · · · . (2.13)

Here, instead of the density perturbation ρ, the function ϕ is used, which is more
convenient for matching to the inner solution and is defined by

ϕ = ψ −Π, ∂Π

∂y
= −αu

′
c

rc
ρ, (2.14)

and the following designations are introduced:

Ȧ = ic
dA

dξ
+ ΩA, R1 =

J1rc

u′c
2
≡ J1

JN
Rc. (2.15)

The parameter Q = u′′c/u′c − αr′c/rc (see (1.7) and figure 3) serves as some kind of flow
asymmetry index and plays – as will be shown later in the text – an important role
in nonlinear theory.

Arbitrary constants b±1,2 (± indicates that y → yc±0 accordingly) will be determined
(together with the respective orders λ1 and λ2) by matching to the inner solution. The
constants f+ and f− obey the modified solvability condition (MSC)

f− − f+ =
Ȧ

k
I1 − 2ik

dA

dξ
I2 − J1AI3, (2.16)

I1 =

∫ ∞
−∞

dyg2(y)

[
u′′

(u− c)2
− 2Jr

(u− c)3

]
, I2 =

∫ ∞
−∞

dyg2(y), I3 =

∫ ∞
−∞

dy
r(y)g2(y)

(u− c)2
,

which, after determining f± from the inner solution, gives a nonlinear evolution
equation. The integrals I1 and I3 should be evaluated by indenting the singular point

† We assume that Y α is analytic in the lower half-plane of complex Y , and α 6= 1
2
. Results for

α = 1
2

can be obtained by taking the limit and are also contained in Paper I.
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Figure 6. Variation of the ‘growth rate components’ ΓΩ and ΓJ along the stability boundary:
(a) model (2.7a), (b) model (2.7b). Curve 1, D = 0.1; 2, D = 0.3; 3, D = 0.5; 4, D = 0.49.

from below. It should be noted that the outer solution including the MSC (2.16) does
not differ fundamentally from that obtained in Paper I.

In the linear approximation, f+ = f−, and (2.16) gives the equation

dA

dξ
=

i

I0

[I1Ω − kI3J1]A, I0 = cI1 − 2k2I2, (2.17)

describing an exponential growth in amplitude at the initial stage of evolution:

A = A0 exp[(Γ + iκ)ξ], (2.18)

κ = Re [(I1Ω − kI3J1)/I0], Γ = −Im [(I1Ω − kI3J1)/I0] ≡ ΓΩΩ + ΓJJ1.

For the models (2.7a, b), ΓΩ and ΓJ are plotted versus ω in figure 6. Note that
ΓΩ changes its sign in the point where J(ω) has its maximum whereas ΓJ remains
negative everywhere because the instability region lies under the neutral curve.

3. Derivation of the nonlinear evolution equation
3.1. Equations of the inner problem

For constructing the solution inside the CL, we introduce, in addition to the inner
coordinate, the variables Ψ and Φ (cf. (2.14)):

ψ = εµαΨ, αu′cρ/rc = −εµα−1PY , Φ = Ψ − P ; (3.1)

the subscript (Y , x or τ) implies differentiation with respect to the corresponding
variable. Substituting into (2.2) and retaining, along with main-order terms, only
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the main corrections for nonlinearity, dissipation and unsteadiness we obtain the
equations of the inner problem:

N̂(a)Ψ − (1− α)u′cΦx − εµα−2(ΨYYΨx −ΨYxΨY ) = νµ−3ΨYY Y

+µ

{
u′′cY Ψx − u′′c

2
Y 2ΨYx − u′c

c
[Y ΨY τ − αΨτ − (1− α)Φτ]− J1

αu′c
(Ψx − Φx)

}
+ · · · ,

(3.2)

N̂(b)Φ− εµα−2(ΦYYΨx − ΦYxΨY ) =
νµ−3

Pr
[ΦYY Y + (Pr − 1)ΨYY Y︸ ︷︷ ︸

I

]

+µ

Q(u′cY − c1)Ψx︸ ︷︷ ︸
II

+ jΨx︸︷︷︸
III

−u
′′
c

2
Y 2ΦYx − u′c

c
[Y ΦY τ − (1− α)Φτ] +

J1

αu′c
Φx

+ · · · ,

(3.3)

where

N̂(a) =

[
∂

∂τ
+ (u′cY − c1)

∂

∂x

]
∂

∂Y
− αu′c ∂∂x ,

N̂(b) =

[
∂

∂τ
+ (u′cY − c1)

∂

∂x

]
∂

∂Y
− (1− α)u′c ∂∂x ; τ =

ξ

c
, c1 =

Ω

k
, j = c1Q− J1

αu′c
.

Equations (3.2) and (3.3) are analogous to equations (3.2) in Paper I. The difference
lies in the fact that we are concerned with the spatial rather than temporal evolution,
α in our case is arbitrary (in Paper I α = 1

2
), and the flow possesses no symmetry

(u′′c 6= 0, Q 6= 0). The last difference is of the utmost significance because the additional
nonlinearity (compared to Paper I) is associated with Q 6= 0.

By analogy with (2.9) we seek the solution of the inner problem in the form
of a Fourier series expansion in x and each harmonic in the form of a series in
powers of parameters εµα−2, νµ−3 and µ small compared with unity. First, solving
the equations (3.2) and (3.3) with zero right-hand sides, we find the main part of the
inner solution. Then, taking into account the right-hand sides, we obtain dissipative
(∼ νµ−3) and non-dissipative (∼ µ) corrections as well as corrections of higher orders
of smallness proportional to powers and products of these parameters. In calculating
each iteration, we shall solve an equation of the form

N̂lFl ≡
{[

∂

∂τ
+ ilk(u′cY − c1)

]
∂

∂Y
− iβlku′c

}
Fl = Rl

(the subscript indicates the harmonic number) considered in detail in Appendix A to
reduce the mathematics in the main text to a minimum.

To close the MSC (2.16) and obtain the evolution equation, it is necessary to find
f±, i.e. the coefficients of the term ∼ Y 1−α in the outer (Y → ±∞) expansion of
the fundamental harmonic (l = 1) of the inner solution. As follows from (2.11), such
a term can appear if only Φ 6= 0, and formulae (A 2), (A 6) and (A 8) explain this
relation in terms of the inner solution and show that the non-trivial contribution
(f+ 6= f−) is necessarily nonlinear.

There are three main contributions to Φ and therefore to the MSC (2.16). Two of
them, dissipative and non-dissipative, are generated by the under-braced terms on the
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right-hand side of (3.3). As shown in Paper I, the third arises in the main part of the
inner solution because the matching to the outer solution requires Φ 6= 0. We shall
calculate only the leading terms of these contributions, and it is convenient to divide
all iterations of the inner solution necessary for this purpose into three sequences:
the main sequence calculated at zero right-hand sides in (3.2) and (3.3), and two side
sequences, dissipative (∼ νµ−3) and non-dissipative (∼ µ). Accordingly, we seek the
solution of the inner problem in the form of an expansion

Ψ1 =
[
Ψ

(1)
1 + ε2µ2α−4Ψ

(2)
1 + ε4µ2α−7Ψ

(3)
1 + νµ−3Ψ

(4)
1 + ε2νµ2α−7Ψ

(5)
1 + µΨ

(6)
1

+ε2µ2α−3Ψ
(7)
1 + · · · ]ei(kx−ωt),

Ψ0 = εµα−2Ψ
(1)
0 + ενµα−5Ψ

(2)
0 + εµα−1Ψ

(3)
0 + · · · ,

Ψ2 =
[
εµα−2Ψ

(1)
2 + ε3µ3α−6Ψ

(2)
2 + ε3µα−5Ψ

(3)
2 + ενµα−5Ψ

(4)
2

+εµα−1Ψ
(5)
2 + · · · ]e2i(kx−ωt),

Ψ3 = ε2µ2α−4Ψ
(1)
3 e3i(kx−ωt) + · · · ,

and, in a similar spirit, for Φ. The first to be written are the terms of the main
sequence, followed by the dissipative and non-dissipative terms.

Finally, before starting the calculations we show that in the unsteady CL regime
term III in (3.3) makes an excessively small, non-competitive contribution to (2.16).
For this purpose, we truncate the equations (3.2) and (3.3) retaining only term III on
their right-hand sides. The contribution to the solution of (3.3) linear in j (and fully
nonlinear in A),

Φ =
µj

(1− 2α)u′c
Ψmain , (3.4)

is much smaller than Ψmain, the main part of the inner solution, and contributes to
(2.16) in the same way as Ψmain does. Therefore, the contribution to (2.16) linear in
j is merely a small correction to the contribution from the main sequence. In the
next (quadratic in j) approximation, the contribution with the necessary asymptotic
behaviour arises as early as in the first nonlinear (∼ A3) iteration of the fundamental
harmonic, Ψ (j)

1 = O(ε2µ2α−2), which, in view of (3.1), corresponds to ψ(j)
1 = O(ε3µ3α−2).

In the unsteady CL regime

lν � lt and lN � lt, i.e. ν � µ3 and ε� µ2−α. (3.5)

It is easy to see that for the matching of ψ(j)
1 to (2.10) and for the competitiveness

of the corresponding contribution to the MSC (2.16), an excessively large amplitude
would be required, ε = O(µ2−2α) � µ2−α, unattainable in the unsteady CL regime; a
further expansion in powers of j will give still smaller contributions.

3.2. Quintic nonlinearity (contribution from the main sequence)

3.2.1. O(1) of the fundamental

The solution of the equations

N̂(a)
1 Ψ

(1)
1 = i(1− α)ku′cΦ(1)

1 , N̂(b)
1 Φ

(1)
1 = 0,
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Figure 7. (a) Contour C , (b) contour L.

matching to (2.10) and (2.11) is readily obtained from (A 1) and (A 2):

Ψ
(1)
1 ≡W =

Γ (α+ 1) exp[iπ(α+ 1)/2]

2π(ku′c)α

∫
C

dt t−α−1A(τ−t)e−ik(u′cY−c1)t, Φ
(1)
1 = 0. (3.6)

The contour C is shown in figure 7(a).

3.2.2. O(εµα−2) of the zeroth harmonic

Ψ
(1)
0Y τ = ik

∂

∂Y

(
W
′
W −WW ′

)
, Φ

(1)
0Y τ = 0. (3.7)

Here, the prime denotes the derivative with respect to Y , and the overbar signifies a

complex conjugate. Upon multiplying N̂(a)
1 W = 0 by W

′
and adding to the complex

conjugate expression, we obtain

∂

∂τ
|W ′|2 = iαku′c

(
W
′
W −WW ′

)
, (3.8)

which permits us to integrate (3.7):

Ψ
(1)
0 =

|W ′|2
αu′c

, Φ
(1)
0 = 0.

3.2.3. O(εµα−2) of the second harmonic

N̂(a)
2 Ψ

(1)
2 = ik(W ′′W −W ′2) + 2i(1− α)ku′cΦ(1)

2 , N̂(b)
2 Φ

(1)
2 = 0.

By means of (A 4) and (3.6) we find

Ψ
(1)
2 = −k[Γ (α+1)]2eiπα

8π2(ku′c)2α−1

∫ ∞
0

ds

∫
C

ds1

∫
C

ds2(s1s2)
−α−1

×A(τ−s−s1)A(τ−s−s2)(s1−s2)2

×(s1 + s2)
α(2s+ s1 + s2)

−α−1 exp[−ik(u′cY − c1)(2s+ s1 + s2)], (3.9a)

Φ
(1)
2 = 0.
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By changing the variables, t1 = s+ s1 and t2 = s+ s2, and integrating over s, we get

Ψ
(1)
2 =

kΓ (α)Γ (α+1)eiπα

4π2(ku′c)2α−1

∫
C

dt1

∫
C

dt2A(τ−t1)A(τ−t2)
(
t1

t2

)α
(t1−t2)1−α

(t1+t2)1+α

×F
(
−α,−α

2
; 1− α

2
;
t22
t21

)
exp[−ik(u′cY − c1)(t1+t2)]θ(t1−t2), (3.9b)

where F(a, b, ; c; z) is a hypergeometric function (Abramowitz & Stegun 1964), and

θ(z) =

{
1, z > 0,
0, z < 0.

The function Ψ
(1)
2 is analytic in the lower half-plane (ImY < 0) and is matched to

the first term in (2.12).

3.2.4. O(ε2µ2α−4) of the fundamental

N̂(a)
1 Ψ

(2)
1 = ik[Ψ (1)

0Y YW−Ψ (1)
0YW

′+2Ψ (1)
2 W

′′−Ψ (1)
2YW

′ −Ψ (1)
2Y YW ] + i(1− α)ku′cΦ(2)

1 ,

N̂(b)
1 Φ

(2)
1 = 0.

The solution is obtained by a standard method and has the form

Ψ
(2)
1 =

ik2Γ (α)[Γ (α+1)]2eiπα/2

8π3(ku′c)3α−2

∫ ∞
0

dt

∫
C

dt1

∫
C

dt2

∫
C

dt3A(τ−t−t1)

×A(τ−t−t2)A(τ−t−t3) (t1t2t3)
−α−1(t3−t1−t2)α

(t3−t−t1−t2)α+1

×
{
t1

2α+1t2
(t1−t2)1−α

(t1+t2)1+α
(t1+t2+t3)(2t3−t1−t2)F

(
−α,−α

2
; 1− α

2
;
t22
t21

)
− t3 [t1(t1−t3)2 + t2(t2−t3)2 + t1t2(2t3−t1−t2)]}
×θ(t1−t2) exp[ik(u′cY − c1)(t3 − t− t1 − t2)], (3.10)

Φ
(2)
1 = 0.

The contour C is complex conjugate with respect to the contour C . Note that, unlike
W and Ψ (1)

2 , the functions Ψ (1)
0 and Ψ (2)

1 have singularities not only in the upper but
also in the lower half-plane. As a result, for example, when Y → ±∞

Ψ
(2)
1 = D

(2)±
1 Y α + O(Y α−1),

with D(2)+
1 6= D

(2)−
1 . Matching to (2.10), in view of (3.1), gives

λ1 = ε3µ3α−4, b±1 = D
(2)±
1 .
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3.2.5. O(ε2µ2α−4) of the third harmonic

N̂(a)
3 Ψ

(1)
3 = ik(2Ψ (1)

2 W ′′ − 3Ψ (1)
2YW

′ +Ψ
(1)
2Y YW ) + 3i(1− α)ku′cΦ(1)

3 ,

N̂(b)
3 Φ

(1)
3 = 0.

By means of (3.6), (3.9a) and (A 4), we find Φ(1)
3 = 0, and

Ψ
(1)
3 =− ik2[Γ (α+ 1)]3e3iπα/2

(2π)3(ku′c)3α−2

∫ ∞
0

dt

∫ ∞
0

dt4

∫
C

dt1

∫
C

dt2

∫
C

dt3

×A(τ−t−t1)A(τ−t−t2−t4)A(τ−t−t3−t4)

× (t1t2t3)
−α−1(t2−t3)2(t2+t3)

α(t1+t2+t3+2t4)
α

(t2+t3+2t4)α+1(3t+t1+t2+t3+2t4)α+1
(t1−t2−t3−2t4)

×(2t1−t2−t3−2t4)θ(t2−t3) exp[−ik(u′cY − c1)(3t+t1+t2+t3+2t4)]. (3.11)

3.2.6. O(ε3µ3α−6) of the second harmonic

N̂(a)
2 Ψ

(2)
2 = ik[2Ψ (1)

0Y Y Ψ
(1)
2 −2Ψ (1)

0Y Ψ
(1)
2Y +Ψ (2)

1 W ′′−2Ψ (2)
1YW

′+Ψ (2)
1Y YW+3Ψ (1)

3 W
′′

−2Ψ (1)
3YW

′ −Ψ (1)
3Y YW ] + 2i(1− α)ku′cΦ(2)

2 , (3.12)

N̂(b)
2 Φ

(2)
2 = 0.

In Paper I, it is at this order that Φ 6= 0 appeared. When α 6= 1
2
, the situation is

somewhat different because the last two parenthetical terms in the expansion (2.12)
have different orders and Ψ (2)

2 is matched only to the first of them, and Φ(2)
2 = 0.

According to (A 6), when Y → ±∞
Ψ

(2)
2 = M±Y α + O(Y α−1),

and M+ 6= M− in view of the non-analyticity of the right-hand side of (3.12) in the
lower half-plane (ImY < 0). By means of simple but rather unwieldy calculations, it
is possible to find (cf. (3.30) in Paper I)

M+ −M−=
2α+1παk3eiπ(1−α)/2

Γ (1+α)[Γ (1−α)]4(ku′c)3α−3

∫ ∞
0

dt t5−3α

∫ 1

0

dx x

∫ 1

0

dy

×G(x, y)A(τ−t)A(τ−xt)A(τ− xyt)A(τ− (1 + x+ xy)t). (3.13)

The kernel G(x, y) is given in Appendix B.
The matching Ψ (2)

2 to (2.12), in view of (3.1), yields

λ2 = ε4µ3α−6, b+
2 q

+ = M+, b−2 q
− = M−. (3.14)

But each of the expansions (2.12) and (more importantly) (2.13) contains yet another
term ∼ λ2b

±
2 µ

1−αY 1−α = ε4µ2α−5b±2 Y 1−α, and these terms have no counterpart in the
already constructed inner solution. For matching to them, it is necessary to add to
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the inner solution a corresponding contribution which cannot appear as a result of
the generation of harmonics.

3.2.7. O(ε3µα−5) of the second harmonic

N̂(a)
2 Ψ

(3)
2 = 2i(1− α)ku′cΦ(3)

2 , N̂(b)
2 Φ

(3)
2 = 0.

The solution of these homogeneous equations is easily obtained using (A 1) and (A 8):

Φ
(3)
2 = −Γ (2− α)e−iπα/2

2π(2ku′c)1−α

∫
C

dt tα−2C(τ− t)e−2ik(u′cY−c1)t, Ψ
(3)
2 =

1− α
1− 2α

Φ
(3)
2 .

The matching to (2.12) and (2.13) gives (in view of (3.14))

b+
2 = b−2 =

M+ −M−

q+ − q− , C(τ) =
M+ −M−

(1− α)∆ , ∆ =
q+ − q−
1− 2α

, (3.15)

In the general case q+ and q− are finite and different, but other variants are possible;
they are all treated in Appendix C.

It should be emphasized that the mechanism for generating Φ in the process of
matching to the outer solution is such that it changes the order of the corresponding
(second in this case) harmonic by a factor µ1−2α. As a result, in the case of the ordinary
generation of harmonics successive contributions to the same harmonic (for example,
Ψ

(1)
1 and Ψ (2)

1 ) differ by the factor F1 = ε2µ2α−4 � 1 (see (3.5)), and in the case of the
matching-induced generation of Φ they differ by the factor

F0 = ε2µ−3 � 1. (3.16)

The last inequality is indispensable for the correctness of the perturbation theory
being developed here.

3.2.8. O(ε4µ2α−7) of the fundamental

N̂(a)
1 Ψ

(3)
1 = ik(2Ψ (3)

2 W
′′ −Ψ (3)

2YW
′ −Ψ (3)

2Y YW ) + i(1− α)ku′cΦ(3)
1 ,

N̂(b)
1 Φ

(3)
1 = −ik

(
2Φ(3)

2YW
′
+ Φ

(3)
2Y YW

)
.

It is evident that at this order the solution has the required asymptotic behaviour

Φ
(3)
1 = m±Y 1−α + O(Y −α), Ψ

(3)
1 =

1− α
1− 2α

m±Y 1−α + n±Y α + O(Y α−1 + Y −α),

and the matching to (2.10) and (2.11) calls for a scaling

ε4 = µ9−4α. (3.17)

By means of (A 6), we find

m+ − m− = − 4ikαπ3/2(ku′c)1−αeiπα/2

Γ (1− α)Γ ( 1
2
(1− α))Γ ( 1

2
(2 + α)

) ∫ ∞
0

dt t1−αC(τ− t)A(τ− 2t).

In view of (3.15) and (3.13), with a little rearrangement, we may write

m+ − m− =
2α+2α2π5/2k4(ku′c)4−4α

Γ (1 + α)[Γ (1− α)]5Γ
(

1
2
(2 + α)

)
Γ
(

1
2
(3− α))∆I (5), (3.18)
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where

I (5) =

∫ ∞
0

dt t1−α
∫ ∞

0

ds s5−3α

∫ 1

0

dx x

∫ 1

0

dy G(x, y)

×A(τ− t− s)A(τ− t− xs)A(τ− t− xys)
×A(τ− t− (1 + x+ xy)s)A(τ− 2t)

=

∫ ∞
0

dt t7−4α

∫ 1

0

ds

∫ 1

0

dy

∫ 1

0

dz H(s, y, z)A(τ− t)A(τ− st)A(τ− syt)

×A(τ− 2syzt)A(τ− (1 + s+ sy − 2syz)t),

H(s, y, z) = s3−αy2−αz1−α(1− syz)3−3αG

(
s

1− yz
1− syz , y

1− z
1− yz

)
.

This is just the contribution to the MSC (2.16) from the main sequence.
Before proceeding to calculating the contributions of the side sequences, we should

note that the structure of the nonlinear term in (3.3) is such that Ψ of the main
sequence and Φ of the side sequence participate in the generation of harmonics. It
will therefore suffice to calculate Φ only.

3.3. Dissipative nonlinearity

This nonlinearity is caused by the contribution to Φ which is due to the dissipative
term I on the right-hand side of (3.3).

3.3.1. O(νµ−3) of the fundamental

N̂(a)
1 Ψ

(4)
1 = W ′′′ + i(1− α)ku′cΦ(4)

1 , N̂(b)
1 Φ

(4)
1 =

Pr − 1

Pr
W ′′′.

Since
∂3

∂Y 3
N̂(a)

1 W = (N̂(a)
1 + 3iku′c)W

′′′ =
[
N̂(b)

1 + i(4− 2α)ku′c
]
W ′′′ = 0,

then

Φ
(4)
1 =

i(Pr − 1)

2(2− α)Pr ku′cW
′′′, Ψ

(4)
1 = i

(3− α)Pr + 1− α
6(2− α)Pr ku′c W ′′′. (3.19)

3.3.2. O(ενµα−5) of the zeroth harmonic

Φ
(2)
0τY = ik

∂

∂Y

(
Φ

(4)
1YW − Φ(4)

1YW
)

+
Pr − 1

Pr
Ψ

(1)
0Y Y Y .

Upon integrating with respect to Y and τ, in view of the fact that Φ → 0 when
τ→ −∞, we obtain

Φ
(2)
0 =

(Pr − 1)kΓ (α)Γ (α+ 1)

4π2Pr(ku′c)2α−3

∫ ∞
0

dt

∫
C

dt1

∫
C

dt2

×A(τ− t− t1)A(τ− t− t2)(t1t2)−α−1

×
[

α

2(2− α) (t41 + t42)− t1t2(t1 − t2)2

]
exp[−ik(u′cY − c1)(t1 − t2)].
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3.3.3. O(ενµα−5) of the second harmonic

N̂(b)
2 Φ

(4)
2 = ik

(
Φ

(4)
1Y YW − Φ(4)

1YW
′
)

+
Pr − 1

Pr
Ψ

(1)
2Y Y Y .

By means of (3.6), (3.9b) and (3.19), we get

Φ
(4)
2 =

(Pr − 1)kΓ (α)Γ (α+ 1)

4π2Pr(ku′c)2α−3
eiπα

∫ ∞
0

dt

∫
C

dt1

∫
C

dt2A(τ− t− t1)A(τ− t− t2)

×
[

α

2(2−α) (t1 − t2)2(t21 + t22)− t2α+1
1 t2(t

2
1 − t22)1−αF

(
−α,−α

2
; 1− α

2
;
t22
t21

)]

×
(

t1 + t2

2t+ t1 + t2

)2−α
(t1t2)

−α−1θ(t1 − t2) exp[−ik(u′cY − c1)(2t+ t1 + t2)].

3.3.4. O(ε2νµ2α−7) of the fundamental

N̂(b)
1 Φ

(5)
1 = ik[Φ(2)

0Y YW−Ψ (1)
0Y Φ

(4)
1Y +2Ψ (1)

2 Φ
(4)
1Y Y +Ψ (1)

2Y Φ
(4)
1Y −Φ(4)

2Y YW−2Φ(4)
2YW

′
]

+
Pr − 1

Pr
Ψ

(2)
1Y Y Y .

According to (A 6), when Y → ±∞
Φ

(5)
1 = m±ν Y

1−α + O(Y −α),

where

m+
ν − m−ν = − π(Pr − 1)α(1− α)2k2e−iπα

PrΓ (1− α)Γ (3− α)(ku′c)4α−5

∫ ∞
0

dt t7−4α

∫ 1

0

dσ σ3−2αGν(σ)

×A(τ− t)A(τ− σt)A(τ− (1 + σ)t). (3.20)

The index ν signifies the dissipative nature of the contribution. The kernel Gν(σ) has
alternating signs (see figure 8a). In explicit form it is written in Appendix B.

Matching Φ(5)
1 to (2.11), in view of (3.1), calls for the scaling

ε2ν = µ9−4α. (3.21)

3.4. Non-dissipative cubic nonlinearity

This nonlinearity is caused by the contribution to Φ which is due to the non-dissipative
term II on the right-hand side of (3.3).

3.4.1. O(µ) of the fundamental

N̂(b)
1 Φ

(6)
1 = ikQ(u′cY − c1)W. (3.22)

Let us introduce the function

V = −Γ (α+ 1)eiπα/2

2π(ku′c)α+1

∫
C

dt t−α−2A(τ− t)e−ik(u′cY−c1)t,

which satisfies the relation VY = W and the equation

(N̂(a)
1 − iku′c)V = 0.
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Figure 8. Kernels of cubic nonlinear terms versus σ: (a) dissipative nonlinearity, (b) non-
dissipative non-linearity; each curve is marked by the corresponding value of α.

It is an easy matter to show that the solution of (3.22) has the form

Φ
(6)
1 =

Q

2α(1− 2α)

[
(1 + α)V − 2α

u′c
(u′cY − c1)W

]
.

3.4.2. O(εµα−1) of the zeroth harmonic

Φ
(3)
0τY = ik

∂

∂Y

(
Φ

(6)
1YW − Φ(6)

1YW
)

=
ikQ

(1− 2α)u′c

∂

∂Y

[
(u′cY − c1)(W

′W −WW
′
)
]
.

By means of (3.8), we obtain

Φ
(3)
0 = −Q(u′cY − c1)|W ′|2

α(1− 2α)u′c
2

.

3.4.3. O(εµα−1) of the second harmonic

N̂(b)
2 Φ

(5)
2 = ik

(
Φ

(6)
1Y YW−Φ(6)

1YW
′)+2ikQ(u′cY −c1)Ψ

(1)
2

= ikQ

{
2(u′cY −c1)Ψ

(1)
2 − 1

(1−2α)u′c

[
(u′cY −c1)(W

′′W−W ′2)+u′cWW ′]} .
The solution of this equation has the form

Φ
(5)
2 =− ikQΓ (α)Γ (α+1)eiπα

8π2(1−2α)(ku′c)2α

∫ ∞
0

dt

∫
C

dt1

∫
C

dt2A(τ−t−t1)A(τ−t−t2) (t1t2)
−α−1

(2t+t1+t2)2−α

×
{

(t1 − t2)2(t1 + t2)
α

(2t+ t1 + t2)2α
[1 + α+ 2ikα(u′cY − c1)(2t+ t1 + t2)]

− (1− α)(t1 − t2)2 + 2α(t1 + t2)
2

(t1 + t2)α

}
θ(t1 − t2) exp[−ik(u′cY − c1)(2t+ t1 + t2)].
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3.4.4. O(ε2µ2α−3) of the fundamental

N̂(b)
1 Φ

(7)
1 =ik

[
Φ

(3)
0Y YW−Ψ (1)

0Y Φ
(6)
1Y +2Ψ (1)

2 Φ
(6)
1Y Y +Ψ (1)

2Y Φ
(6)
1Y −Φ(5)

2Y YW−2Φ(5)
2YW

′]
+ikQ(u′cY − c1)Ψ

(2)
1 .

According to (A 6), when Y → ±∞
Φ

(7)
1 = m±QY

1−α + O(Y −α),

where

m+
Q − m−Q =

2iπk2Q(1− α)(ku′c)2−4αe−iπα

(1−2α)[Γ (1−α)]2Γ (2−2α)

∫ ∞
0

dt t3−4α

×
∫ 1

0

dσ σ2−2αGQ(σ)A(τ−t)A(τ−σt)A(τ− (1 + σ)t). (3.23)

The kernel GQ(σ) is a positive monotonically growing function of σ (see figure 8b).

In explicit form it is written in Appendix B. The matching of Φ(7)
1 to (2.11) calls for

the scaling

ε2 = µ5−4α. (3.24)

Noteworthy is the fact that in this Subsection all iterations of Φ, and m+
Q −m−Q along

with them, contain the factor (1− 2α)−1 and tend to infinity when α→ 1
2
. If, however,

calculations are performed directly for α = 1
2
, it turns out that all quantities are

finite, but the integrals expressing them contain not only the powers of ti but also
logarithms. To reconcile these results with those obtained above, it is necessary to
construct for α → 1

2
an expansion of the solution (3.3) differing from that described

above in that it takes into account explicitly both the smallness of (1 − 2α) and
contributions to the complete solution of the form (3.4). We do not reproduce these
calculations here because the non-dissipative cubic nonlinearity, as will be shown in
§ 4, influences the instability development significantly only if α 6 1

4
when (3.23) holds.

3.5. Nonlinear evolution equations in the unsteady CL regime

Thus, in the unsteady CL regime there are three main contributions to the MSC
(2.16) from the inner solution: dissipative, non-dissipative cubic, and non-dissipative
quintic. We have calculated the first terms of the expansions of these contributions
(respectively, (3.20), (3.23) and (3.18)) in parameters F0 = ε2µ−3 and F1 = ε2µ2α−4

which were taken to be small, and we have now to substitute them into (2.16)
to obtain the nonlinear evolution equation (NEE). To each contribution, however,
there corresponds its own scaling ((3.21), (3.24) and (3.17), respectively), and these
scalings can be carried out simultaneously only when α = 1

4
and the amplitude and

supercriticality (γL) are such that ε = ν1/2 and µ = ν1/4. This is just a point in the space
of problem parameters, and only at this point do the three nonlinearities have the
same order of magnitude. In all the remaining space of parameters, the nonlinearities
have different orders of magnitude, and only one of them determines the instability
development; in this region that is the main one, and the other two are of secondary
importance. Therefore, first we substitute into the MSC (2.16) the individual nonlinear
contributions of the CL to obtain and analyse three NEEs, and only after that do we
bring together the three nonlinearities in a single NEE and study their competition.



Nonlinear stability of a stratified shear flow. Part 2 255

Taking into consideration that when matching Φ to (2.11)

f+ − f− = (1− α)(m+ − m−),

passing to ‘physical’ variables (see (2.8))

x = cτ/µ, γL = µΓ , Ã = εAe−iκξ

and then dropping the tilde above A, we obtain the following NEEs:
with the dissipative nonlinearity

dA

dx
= γLA+

Pr − 1

Pr
νb1e

−iχ1

∫ ∞
0

ds s7−4α

∫ 1

0

dσ σ3−2α

×Gν(σ)A(x−s)A(x−σs)A(x−(1+σ)s); (3.25)

with the non-dissipative cubic nonlinearity

dA

dx
= γLA− iQb2e

−iχ1

∫ ∞
0

ds s3−4α

∫ 1

0

dσ σ2−2α

×GQ(σ)A(x−s)A(x−σs)A(x−(1+σ)s); (3.26)

with the non-dissipative quintic nonlinearity

dA

dx
= γLA+ b3e

−iχ2

∫ ∞
0

dt t1−α
∫ ∞

0

ds s5−3α

∫ 1

0

dv v

∫ 1

0

dw

×G(v, w)A(x−t−s)A(x−t−vs)A(x−t−vws)A(x−t−(1+v+vw)s)A(x−2t)

= γLA+ b3e
−iχ2

∫ ∞
0

ds s7−4α

∫ 1

0

dt

∫ 1

0

dv

∫ 1

0

dwH(t, v, w)A(x−s)A(x−ts)A(x−tvs)

×A(x− 2tvws)A(x− (1 + t+ tv − 2tvw)s); (3.27)

where

b1 =
πα(1− α)(ku′c/c)8−4α

Γ (1− α)Γ (3− α)|I0|u′c3
, χ1 = χ0 + π(α+ 1

2
), χ0 = arg I0; (3.28a)

b2 =
2π(1− α)2k(ku′c/c)4−4α

(1− 2α)[Γ (1− α)]2Γ (2− 2α)|I0|u′c2
; (3.28b)

b3 =
2α+3π5/2α2k(ku′c/c)8−4α

Γ (1 + α)[Γ (1− α)]5Γ ( 1
2
(2 + α))Γ ( 1

2
(1− α))|∆||I0|u′c4

, χ2 = χ0 + arg∆− π

2
.

(3.28c)

In (3.25)–(3.27), the kernels are real and universal, i.e. they are independent of the
flow structure as a whole, while the phases of nonlinear terms, on the contrary, do
depend on the flow structure (in terms of χ0 in (3.25), (3.26) and χ0 + arg∆ in (3.27)).
For the flow models (2.7a, b), the dependence of χ1 and χ2 on α for different values of
the asymmetry parameter D is shown in figure 9.

The NEEs (3.25) and (3.27) are a generalization of equations (4.1) and (4.2) derived
in Paper I, to the case of an arbitrary flow and α 6= 1

2
(i.e. Rc 6= 1

4
). By contrast,

NEE (3.26) is a new one; it is based on the non-dissipative cubic nonlinearity which
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Figure 9. Variation of the phases χ1 and χ2 along the stability boundary: (a) model (2.7a),
(b) model (2.7b). Curve 1, D = 0.1; 2, D = 0.3; 3, D = 0.5; 4, D = 0.49.

disappears when the parameter Q = u′′c/u′c − αr′c/rc becomes zero (as in the case of
Drazin’s and Holmboe’s flows). In the NEE (3.27) the nonlinear term is written in
two forms. Its representation in terms of H(t, v, w) is in the best agreement with the
quintic nonlinearity in Paper I whereas the representation in terms of G(v, w) is more
suitable for evaluating the parameters of explosive growth (see Appendix D).

Section 4 is devoted to the analysis of the solutions of NEEs (3.25)–(3.27) and of
the competition between the nonlinearities. At this point, however, it is pertinent to
consider yet another issue associated with the derivation of the NEE.

3.6. The NEE in the viscous CL regime

Equations of the inner problem for the viscous CL regime (µ � ν1/3, ε � ν(2−α)/3)
can be obtained from (3.2) and (3.3) by simple reordering:

y − yc = ν1/3Y , ψ = ενα/3Ψ, αu′cρ/rc = −εν(α−1)/3PY .

Retaining only the necessary terms we get

ΨYY Y − u′cY ΨYx + αu′cΨx = −εν(α−2)/3 (ΨYYΨx −ΨYxΨY )− (1− α)u′cΦx, (3.29)

Pr−1ΦYY Y − u′cY ΦYx + (1− α)u′cΦx = −εν(α−2)/3 (ΦYYΨx − ΦYxΨY )− Pr−1

Pr
ΨY Y Y .

Unlike (3.2) and (3.3), the inner problem (3.29) is not degenerate (except when
Pr = 1): in any iteration of its solution Φ 6= 0. For this reason only the main



Nonlinear stability of a stratified shear flow. Part 2 257

sequence should be calculated,

Ψ1 =
[
Ψ

(1)
1 + ε2ν2(α−2)/3Ψ

(2)
1 + · · · ]ei(kx−ωt),

Ψ0 = εν(α−2)/3Ψ
(1)
0 + · · · , Ψ2 =

[
εν(α−2)/3Ψ

(1)
2 + · · · ]e2i(kx−ωt), . . . ,

and the same iterations for Φ. The main nonlinear contribution to the NEE is cubic
in A, and it is obtained when matching Ψ (2)

1 and Φ(2)
1 to (2.10) and (2.11) respectively.

Such a matching to those terms in (2.10) and (2.11) which are ∼ εµν(1−α)/3f±Y 1−α
after reordering, calls for the scaling

ε2 = µν(5−4α)/3

and, because the nonlinearity is obviously local (i.e. the nonlinear term depends only
on the current value of the amplitude rather than on the whole history as in (3.25)–
(3.27)), gives when substituted into (2.16) a Landau–Stuart–Watson equation of the
form

dA

dx
= γLA+

Pr − 1

|I0|Pr
be−iχ3

ν(5−4α)/3
|A|2A, (3.30)

analogous to those obtained earlier for α = 1
2

in Drazin’s and Holmboe’s models
((Brown et al. 1981; Churilov & Shukhman 1987); cf. also (1.4)). Here b = b(α) = O(1)
is a real constant.

The behaviour of its solutions is well known. As long as the amplitude is small
enough, it grows exponentially, and once the nonlinearity threshold

|A| = A1 = O(γ
1/2
L ν(5−4α)/6) (3.31)

(curve 1 in figures 12a, b) is reached, the nonlinearity comes into play and the
subsequent course of the evolution is determined by the sign of [(Pr − 1) b cos χ3].
If this sign is negative, the nonlinearity will establish stability at the level (3.31);
otherwise, however, the nonlinearity will accelerate the growth of a disturbance and
will make it explosive,

A ∼ (x0 − x)−1/2+iβ, β = 1
2

tan χ3

(the lower broad dashed arrow in figure 12a, b). The growth rate γ = |A|−1d|A|/dx
increases rapidly with the amplitude, γ = O(|A|2/ν(5−4α)/3), and when

A = O(ν1−2α/3) (3.32)

the unsteady scale lt = γ becomes equal to the viscous scale, lν = ν1/3, and the
transition to the unsteady CL regime occurs, where the growth is also explosive but
with a different exponent (see the next Section and figure 12).

Thus, in the NEE (3.30) two constants, b and χ3, are unknown, and they can be
found by performing an extremely tedious procedure of calculating the necessary
iterations of the solution of the inner problem (3.29).† But we may look for another
way. First we determine χ3. As can be seen from (2.16) and (2.17), χ3 = χ0 + χ+ π/2
is the sum of contributions from the outer (χ0) and inner (χ) solutions, and χ is
the phase of the jump (m+ − m−) of the coefficient at Y 1−α in the outer asymptotic

† Churilov & Shukhman (1987) devoted most of their not short a paper to corresponding
calculations in the presumably simplest case α = 1

2
.
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expansion of Φ1:

m+ − m− = −Pr − 1

Pr

b0e
−iχ

ν(5−4α)/3
|A|2A, b0 =

b

(1− α)k . (3.33)

As in the case α = 1
2

(see Churilov & Shukhman 1987), in each iteration of the
inner solution one can find a certain relation between Ψ (−Y ) and Ψ (Y ) without
solving (3.29). Namely, taking Ψ (1)

1 = AS1(Y ), Ψ (1)
0 = |A|2S0(Y ), Ψ (1)

2 = A2S2(Y ) and

Ψ
(2)
1 = |A|2AS(Y ), one can easily obtain that

S1(−Y ) = e−iπαS1(Y ), S2(−Y ) = e−2iπαS2(Y ), S(−Y ) = e−iπαS(Y )

and S0(Y ) is an even real function. Using these relations we see that the phase χ = πα,
i.e. it is the same as in (3.20), and therefore χ3 ≡ χ1. This fact is not surprising
because the NEEs (3.25) and (3.30) are the limiting cases (corresponding to νµ−3 � 1
and νµ−3 � 1 respectively) of a more general, viscous-unsteady NEE valid for any
relation between µ and ν (evolution equations of this type have been derived for
unstratified shear flows, see e.g. Wu, Lee & Cowley 1993; Churilov & Shukhman
1994). In this sense, one can say that (3.25) and (3.30) are continuations of each other
in the parameter νµ−3.

Now, to determine the character of disturbance evolution in the viscous CL regime
we have to know only the sign of b rather than its value. With this in mind, let
us consider the NEE (3.25) in the limit of non-competitive nonlinearity when the
amplitude is still very small and increases exponentially,

dA

dx
= γLA+

Pr − 1

Pr
νb1e

−iχ1d|A|2A, (3.34)

d =
Γ (8− 4α)

(2γL)8−4α

∫ 1

0

dσ
σ3−2αGν(σ)

(1 + σ)8−4α

=
1

(2γL)8−4α

[
2Γ (4− 2α)

2− α (5− 12α+ 5α2)− 3Γ (2− α)Γ ( 7
2
− 2α)

2Γ ( 5
2
− α) (3− 9α+ 4α2)

]
,

and compare it with (3.30). Being the continuations of each other (in the parameter
νµ−3), equations (3.30) and (3.34) have the same form, and their nonlinear terms have
the same phase and the same dependence on Pr. In (3.34) the factor d becomes zero
when α = α0 = 0.6886, is positive when 0 6 α < α0 and is negative when α0 < α < 1,
and b1 > 0 everywhere in 0 < α < 1. As for the factor b in (3.30), we know that it
is positive when 0 < α� 1 (Shukhman & Churilov 1997) and at α = 1

2
(Churilov &

Shukhman 1987), and it would be reasonable to suggest that b > 0 when 0 < α < α1,
where α1 is close to α0 (at least α1 >

1
2
).

Thus, there is no need to derive the NEE for the viscous CL regime; its functional
form (3.30) and the information about χ3 and b(α) obtained above will suffice for
our purposes. We wish to note in conclusion that in the models of Drazin, Holmboe
and (2.7a, b) as well as in weakly stratified flows with an arbitrary velocity profile,
|χ1| < π/2, i.e. cos χ1 > 0, so that the evolution character of not too long-wavelength
disturbances is governed by the sign of (Pr − 1): stabilization when Pr < 1, and
destabilization when Pr > 1. This regularity was first revealed in symmetric weakly
supercritical flows (Brown et al. 1981; Churilov & Shukhman 1987), and subsequently
it was studied thoroughly by Lott & Teitelbaum (1992).
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4. Evolution of unstable disturbances in the unsteady CL regime
4.1. Particular evolution scenarios

First we consider what picture of disturbance evolution is given by each of equations
(3.25)–(3.27) individually. The right-hand side of each of them involves two terms,
linear and nonlinear. The linear term in all equations is the same, and the nonlinear
terms closely resemble each other in their structure, which, of course, manifests itself
in a similar behaviour of the solutions.

In the full form NEEs (3.25)–(3.27) can be solved numerically only. But in the two
limiting cases, linear and nonlinear, one of two terms on the right-hand side of the
NEE can be neglected, and then the solution can be found in analytic form. In the
linear limit, i.e. far upstream, where the amplitude is still very small (according to
(2.3) A→ 0 when x→ −∞), this is evidently

A(x) = A0e
γLx (4.1)

(without loss of generality, it will be assumed that A0 > 0). And in the nonlinear limit
this is an explosive growth given by the law

A = B(x0 − x)−a+iβ. (4.2)

The general analysis of the problem (Churilov & Shukhman 1992) suggests that
in the unsteady CL regime the initial (exponential) growth of unstable disturbances
should be accelerated to an explosive one. Such an acceleration has been repeatedly
demonstrated by numerical integration of various NEEs of the same type as (3.25)–
(3.27) (e.g. Paper I, Goldstein & Choi 1989; Goldstein & Leib 1989; Shukhman
1991), and we have no reason to expect that solutions of (3.25)–(3.27) will behave in a
different manner. However, each nonlinearity has its own nonlinearity threshold (i.e.
the level of the amplitude, Ath, at which the nonlinear term begins to compete with the
linear term and the disturbance development begins to depart markedly from (4.1))
and at the nonlinear stage it sets its own rate of evolution (i.e. its own parameter a
in (4.2) and its own dependence β(χ)). Let us consider these characteristics.

To determine the nonlinearity thresholds we consider the initial stage of develop-
ment (4.1) and calculate corrections for the nonlinearity by substituting (4.1) into the
right-hand side of the corresponding NEE. We obtain:
from (3.25) (cf. (3.34))

dA

dx
= γLA+

Pr − 1

Pr

νd1e
−iχ1

γ8−4α
|A|2A, d1 = O(1); (4.3a)

from (3.26)

dA

dx
= γLA+

Qd2e
−i(χ1+π/2)

γ4−4α
|A|2A, 0 < d2 = O(1); (4.3b)

from (3.27)

dA

dx
= γLA+

d3e
−iχ2

γ8−4α
|A|4A, 0 < d3 = O(1); (4.3c)

where γ = γL. By order-of-magnitude equating the linear and the nonlinear terms in
(4.3a–c), we find the nonlinearity threshold for each NEE:
for the dissipative nonlinearity (NEE (3.25)) – an extension of (3.31) to the region
γL > ν1/3,

|Ath| = A2 = O(γ
9/2−2α
L ν−1/2); (4.4a)



260 S. M. Churilov

for the non-dissipative cubic nonlinearity (NEE (3.26))

|Ath| = A3 = O(γ
5/2−2α
L ); (4.4b)

for the non-dissipative quintic nonlinearity (NEE (3.27))

|Ath| = A4 = O(γ
9/4−α
L ). (4.4c)

It is interesting to note that equations (4.3a–c) also describe qualitatively correctly
the explosive stage if γ means a current growth rate, γ = |A|−1d|A|/dx. In particular,
they allow one to determine the rates of evolution at the nonlinear stage:
for the dissipative nonlinearity (NEE (3.25))

γ(ν) = O
[
(ν|A|2)1/(9−4α)

]
, or a = 9

2
− 2α; (4.5a)

for the non-dissipative cubic nonlinearity (NEE (3.26))

γ(Q) = O
(|A|2/(5−4α)

)
, or a = 5

2
− 2α; (4.5b)

for the non-dissipative quintic nonlinearity (NEE (3.27))

γ(5) = O
(|A|4/(9−4α)

)
, or a = 9

4
− α. (4.5c)

Finally, we substitute (4.2) into an appropriate NEE to ascertain that it is indeed
the solution (when γL = 0) and the exponent a is correctly calculated by (4.3);
furthermore, we obtain equations for determining β(χ) (see (D 5), (D 6) and (D 12)).
Results derived from solving them are presented in figure 10. While referring the
reader to Appendix D for details, at this point we emphasize that β(χ) is generally
many-valued (this property was originally pointed out by Shukhman 1991), on the
interval −π < χ 6 π it becomes zero at χ = χ∗, and is an odd 2π-periodic function
of (χ − χ∗). The parameter χ∗ can take one of two values: either χ∗ = 0 or χ∗ = π.
For non-dissipative nonlinearities (NEEs (3.26) and (3.27)), we have χ∗ = 0, and for
the dissipative nonlinearirity we have χ∗ = 0 when 0 6 α < α∗ and χ∗ = π when
α∗ < α < 1. Such a jump of χ∗ is due to the fact that when α = α∗ = 0.615 the integral
in (D 2) changes sign.

The solutions of NEEs (3.25)–(3.27) behave in the same manner qualitatively;
therefore, we give a general description and illustrate it with the results of a numerical
integration of NEE (3.26) with the ‘initial condition’ (4.1) at different values of the
phase χ of the nonlinear term (figure 11). NEE (3.26) is chosen because its kernel
is the simplest for numerical calculation. After transforming (3.26) to the form (D 3)
(with G(σ) ≡ GQ(σ), λ = 4 − 4α and µ = 3 − 2α) which is more convenient for
integrating, all the information on the outer solution (i.e. on the flow structure) is
contained only in the phase χ. For this reason, it is appropriate to investigate the
dependence of the behaviour of the NEE solution on χ rather than to solve the NEE
for a particular value of χ obtained in some model of the flow (such as (2.7)).

In the general case the evolution path on the plane of a complex A represents an
unwinding spiral (see figure 11c, d), in full accord with (4.2). The asymptotic growth
rate of the amplitude is determined by the parameter a (see (4.5)), and the direction
and tightness of the spiral winding is governed by the parameter β. In view of the
multivaluedness of β(χ), only a numerical calculation can show which of its branches
will be reached in the course of evolution of the solution starting from (4.1). In all
our calculated variants, the solution for |χ − χ∗| < π reaches the main branch on
which β = 0 when χ = χ∗.

Special attention should be given to the cases χ = 0 and χ = ±π when the
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Figure 10. Dependence β(χ) for NEEs (a) (3.25); (b) (3.26); (c) (3.27).

NEE is real and must therefore have real solutions. The case χ = χ∗ (to which
the ‘destabilizing’ nonlinearity in (4.3) corresponds) fits well into the general picture
described above: when β = 0 the spiral (4.2) ‘straightens’, and the amplitude A
remains real and grows monotonically in an explosive manner (figure 11a).

When χ− χ∗ = ±π the values of β are represented by pairs, ±βi, and they include
no zero values (see figure 10), so all asymptotic representations of the form (4.2)
are necessarily complex. The solution of the NEE in this case, however, is real
and, as shown in Paper I, represents oscillations of A around zero whose frequency
and amplitude increase explosively (figure 11b). Asymptotically, this looks like a
superposition of two solutions (4.2), with +β and −β, although in the nonlinear
equation the superposition of solutions is obviously not a solution. It is interesting to
note that when |χ − χ∗| → π, as a numerical calculation shows, A performs a series
of oscillations and only after that it does reach the spiral (4.2) (figure 11e; see also
figure 5b in Shukhman 1991).
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Figure 11. Results of an integration of NEE (3.26) (χ = χ1 + π/2, α = 0.2): (a) χ = 0,

(b) χ = π, (c) χ = π/4, (d ) χ = π/2, (e) χ = 0.9π; C, C̃ and T are defined in Appendix D.

4.2. Competition between the nonlinearities and a general evolution scenario

Now that we have considered each individual nonlinearity, it is appropriate to abandon
their artificial separation and write a single nonlinear evolution equation for the
unsteady CL regime

dA

dx
= γLA+

Pr−1

Pr
νb1e

−iχ1

∫ ∞
0

ds s7−4α

∫ 1

0

dσσ3−2αGν(σ)A(x−s)A(x−σs)

×A(x−(1+σ)s) + Qb2e
−i(χ1+π/2)

∫ ∞
0

ds s3−4α

∫ 1

0

dσ σ2−2αGQ(σ)A(x−s)

×A(x−σs)A(x−(1+σ)s) + b3e
−iχ2

∫ ∞
0

ds s7−4α

∫ 1

0

dt

∫ 1

0

dv

∫ 1

0

dwH(t, v, w)

×A(x−s)A(x−ts)A(x−tvs)A(x−2tvws)A(x− (1 + t+ tv − 2tvw)s), (4.6)
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Figure 12. Evolution scenarios for disturbances on the γL − A diagram: (a) 0 < α < 1
4
,

(b) 1
4
< α < 3

4
. Viscous CL region: I. Unsteady CL region: II (shaded), dissipative nonlin-

earity is dominant; III, nondissipative cubic nonlinearity is dominant; IV, quintic nonlinearity is
dominant. Nonlinearity threshold: Curve 1, A = A1, 2, A = A2, 3, A = A3, 4, A = A4. Arrows:

−→ A ∼ exp(γLx);
a

=⇒ |A| ∼ (x0 − x)−a.

and to investigate the behaviour of its solutions for different levels of supercriticality
γL (i.e. for different pumping frequencies ω).

Far upstream, nonlinear terms in (4.6) are non-competitive, and the amplitude grows
as (4.1). The nonlinearity with the lowest threshold (at a given γL), will obviously
be the first to intervene in the instability development, and it will also determine
the disturbance behaviour in the initial period of the nonlinear stage of evolution.
Subsequently, however, the winner in the competition could be another nonlinearity,
that which at a given amplitude level ensures the fastest growth rate, i.e. the largest
γ. The other two nonlinear terms, however, will give only small corrections to the
growth rate dictated by this dominant nonlinearity.

The comparison of the non-dissipative nonlinearities

A3/A4 = O(γ
1/4−α
L ), γ(Q)/γ(5) = O

(|A|2(4α−1)/[(5−4α)(9−4α)]
)
, (4.7)

shows that, irrespective of the amplitude level, the cubic nonlinearity is stronger than
the quintic one when α < 1

4
, and when α > 1

4
the quintic nonlinearity is stronger.

Upon comparing (4.4b, c) with (4.4a), we find the nonlinearity threshold for the whole
equation (4.6):
for α < 1

4
(figure 12a)

|Ath| =
{
A2 = O(γ

9/2−2α
L ν−1/2), ν1/3 < γL < ν1/4,

A3 = O(γ
5/2−2α
L ), ν1/4 < γL < 1;

(4.8a)

for 1
4
< α < 3

4
(figure 12b)

|Ath| =
{
A2 = O(γ

9/2−2α
L ν−1/2), ν1/3 < γL < ν2/(9−4α),

A4 = O(γ
9/4−α
L ), ν2/(9−4α) < γL < 1.

(4.8b)
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Recall that when γL < ν1/3 the nonlinearity threshold is defined by the relationship
(3.31) (curve 1 in figure 12a, b).

On comparing the evolution rates (4.5b, c) with (4.5a), it will readily be seen that
wherever the dissipative nonlinearity threshold is lower and this nonlinearity is the
first to come into play, the non-dissipative nonlinearity during the course of the
evolution would of necessity become stronger than it. This occurs at a level

A = O(ν(5−4α)/8) if α < 1
4

(4.9a)

or

A = O(ν1/2) if 1
4
6 α < 3

4
. (4.9b)

This rule also extends to the unsteady CL region which appears when γL < ν1/3

(above the viscous CL region, see figure 12) in the case when the nonlinearity in NEE
(3.30) plays a destabilizing role and, once the instability threshold (3.31) is reached,
it accelerates the growth of disturbances to an explosive one. The transition from the
viscous CL to the unsteady CL occurs at a level (3.32), and immediately after the
transition the dissipative nonlinearity is dominant; subsequently, however, one of the
non-dissipative nonlinearities will necessarily become the main one: cubic (at a level
(4.9a)) if α < 1

4
or quintic (at a level (4.9b)) if 1

4
< α < 3

4
.

The scenarios outlined above, with all the changes of the dominant nonlinearity
and, accordingly, of the evolution law are represented on the γL, A diagrams (figure
12a, b). For this purpose, the unsteady CL region is divided into subregions (II and
III in figure 12a , and II and IV in figure 12b) according to where each particular
nonlinearity is dominant, and the index a of the explosive growth rate (4.2) is shown
near the arrows. Notice that with increasing α, the size of subregion II where the
dissipative nonlinearity is dominant, decreases.

Finally, we now discuss the validity range of NEE (4.6). It is derived by means of
perturbation theory which is valid so long as the inequalities are satisfied (see (3.5)
and (3.16)):

F0 =ε2µ−3 =O(|A|2/γ3)�1 and F1 =ε2µ2(α−2) =O(|A|2γ2(α−2))=O[(lN/lt)
2(2−α)]�1.

Let us consider first the case when stratification is not weak. The unsteady scale
lt = γ is determined by the largest of the growth rates (4.5a–c) and therefore lt > γ(5)

in any case. On the other hand, γ(5) � lN when |A| � 1 and hence lt � lN right
up to A = O(1), i.e. to the validity boundary of weakly nonlinear theory. In other
words, if α is not too small the quintic nonlinearity does guarantee the fulfilment of
the inequality F1 � 1 which means that, as in Paper I, the nonlinear CL regime does
not arise evolutionarily.

As far as the parameter F0 is concerned, however, it is obviously small in those
regions of the γL, A diagram where cubic nonlinearities are dominant, but in region IV
(figure 12b) where the evolution behaviour is determined by the quintic nonlinearity
and γ = γ(5), F0 is no longer small if α > 3

4
. Breakdown of the inequality F0 � 1 means

that the contribution to the NEE from the main sequence (see § 3.2) becomes ‘strongly
nonlinear’ (it must be emphasized that the CL regime remains unsteady in this case,
i.e. lt � lN): it will be a sum of the same order contributions from an infinite number
of iterations, and the perturbation theory developed here is unsuitable for calculating
it. Thus, NEE (4.6) is valid only if α < 3

4
. The value of α = 3

4
is also distinguished

by the fact that it is at this α that the levels (3.32) and (4.9b) merge together and the
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dissipative nonlinearity becomes non-competitive everywhere (subregion II in figure
12b disappears).

On the other hand, in the case of a weak stratification (α� 1) only the inequality
F1 � 1 can be violated because F0 � F1. This violation becomes possible as all
three nonlinearities in (4.6) are weakened when α decreases, and it makes transition
to the nonlinear CL regime in a weakly stratified flow inevitable. The case of weak
stratification was studied in detail by Shukhman & Churilov (1997). And here it is
worth to note that in NEE (4.6) b1 = O(α), Q = O(α) because, as can be easily shown,
u′′c/u′c = O(α) when α → 0 and b3 = O(α2) so that the quintic nonlinearity reduces
much faster than cubic nonlinearities and cannot compete with them.

5. Discussion
Thus, in terms of a weakly nonlinear theory we have studied the spatial evolution

of weakly unstable monochromatic disturbances (created by an external source far
upstream) in stably stratified shear flows of the mixing layer type with sufficiently
arbitrary velocity and density profiles. We now summarize and discuss the main results.

1. NEE (4.6) has been derived which describes the development of disturbances
in the unsteady CL regime. It is a generalization of NEE (5.1) (henceforth referred
to as (I.5.1)) obtained in Paper I to the case of asymmetric flows and an arbitrary
level of stratification (i.e. an arbitrary value of the Richardson number in the range
0 < Rc <

1
4
).

The study made in Paper I involved two main restrictions which have now been
successfully removed: the flow model was assumed to be symmetric (or, more specif-
ically, all calculations were performed for Drazin’s model (1.1)), and Rc ≈ 1

4
(α ≈ 1

2
),

which in symmetric flows corresponds to the top of a neutral curve. In this paper,
we, in the first place, have considered arbitrary α (0 < α < 3

4
), and we have included

nearly the entire stability boundary, except for its longest-wavelength part ( 3
4
< α < 1).

Secondly, relaxing the symmetry assumption, we have detected a new, non-dissipative
cubic nonlinearity which, along with the other two known from Paper I (dissipative
and non-dissipative quintic) governs the instability development. The analysis has
shown that the decisive role in the disturbance evolution is played by this nonlinear-
ity in the case of an intermediate stratification when α 6 1

4
(Rc 6

3
16

), while in the

case of a stronger stratification ( 3
16
< Rc <

1
4

or 1
4
< α < 3

4
) it cannot compete with

the quintic nonlinearity and gives only small corrections to the evolution law.
As a result, it turns out that the validity range of NEE (I.5.1) is broader than

would be suspected: the limitation on the stratification (Rc ≈ 1
4
, α ≈ 1

2
) remains

the same but the flow symmetry is not very important. For (I.5.1) to be valid also
for asymmetric flows, it is necessary merely to restore the phase factors e−iχ1 and
e−iχ2 (determined entirely by the outer problem, see (3.28)) in nonlinear terms thus
making them complex, as discussed in Paper I. It must be emphasized, however, that
in the general case Rc ≈ 1/4 does not imply weak supercriticality of the flow (i.e. a
nearly total suppression of the instability by stratification, see figure 4), and in weakly
supercritical flows Rc, in turn, can differ considerably from 1

4
. In this and all other

cases of a substantial difference of Rc from 1
4
, NEE (I.5.1) is unsuitable, even if its

modifications are taken into account, and NEE (4.6) should be used.
Because of the ‘universality’ of the nonlinear terms in (4.6), applying it to a particular

flow requires little effort. To determine the values of all parameters involved in (4.6),
it is necessary (i) to solve a simple linear problem (2.4) and determine the parameters
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(c, yc, α, and others) and the eigenfunction g(y) of the neutral mode, (ii) to calculate
– using them – the integrals I1, I2 and I3 appearing in (2.16), and (iii) to solve the
problem (2.4) for the second harmonic (to the left and right of yc) and calculate the
parameter ∆ (see (3.15)).

2. NEE (3.30) has been obtained (up to the coefficient b = O(1)) to describe
the instability development in the viscous CL regime, and it was determined under
which conditions the nonlinearity stops the growth of disturbances at the nonlinearity
threshold (3.31) and under which it accelerates this growth to an explosive one.

Without resorting to a (very laborious) formal deriving of the NEE, we have
succeeded in obtaining all the information needed for determinating the nonlinearity
threshold as well as for a (detailed enough) description of disturbance evolution. In
particular, it has been shown that in the case of an arbitrarily stratified mixing layer
and lack of symmetry the boundary between stabilization and destabilization is at
the same value of the Prandtl number, Pr = 1, as in the case of symmetric or weakly
stratified flows studied earlier.

3. For the unsteady CL regime, a qualitative study was made of the development
of unstable disturbances under the control of each of the three nonlinearities indi-
vidually (NEEs (3.25)–(3.27)) and this study was illustrated by results of numerical
calculations.

In their structure, NEEs (3.25)–(3.27) are typical for the unsteady CL regime, as
also is the course of the evolution described by them: from the stage of exponential
growth (4.1) to an explosive growth ‘on a spiral path’ (4.2) through some transition
stage. The evolution laws (4.1) and (4.2) are exact solutions, respectively, in the linear
and nonlinear limits when only one (linear or nonlinear) term is left over on the right-
hand side of NEE, and they describe sufficiently clearly the initial and final stages
of disturbance development. But to gain a more accurate picture of the evolution
as a whole, they must be ‘matched’, and one cannot manage in this case without a
numerical integration of the corresponding NEE. Only in this way it is possible to
relate the ‘initial’ amplitude A0 and the ‘final’ coordinate x0 (in (4.1) and (4.2) they
are arbitrary because of the translational invariance of NEE), choose out of several
possible values of the parameter of the spiral winding β the value which corresponds
to (4.1), and to study in detail the transition stage which can be very complicated and
long-lasting (and in the limiting case |χ| = π the solution does not reach (4.2) at all,
and the ‘transition stage’ lasts up to the singularity).

4. The competition between the nonlinearities in the process of instability develop-
ment was studied and evolution scenarios constructed.

The evolution of disturbances is fast, as it should be in the case of a singular
neutral mode (Churilov & Shukhman 1992): the growth is explosive up to A = O(1),
the nonlinear CL regime does not arise (except in the case of a weak stratification
α � 1), and only with a very small supercriticality (γL � ν1/3) and when Pr < 1
is a stabilization possible in the viscous CL regime. The distinctive features of the
problem under consideration appear in the nature of the nonlinearities and in the
fact that in the case of a sufficiently large amplitude the dominant nonlinearity is of
necessity non-dissipative.

5. The validity range of NEE (4.6) has been determined.
It turns out that along with the traditional (for weakly nonlinear theory) limitations

(|A| � 1, γL � 1), the condition α < 3
4

must be satisfied, i.e. the disturbance must
be not too a long-wavelength one. Otherwise, a calculation of the nonlinearity would
require a quite different technique enabling us to sum infinite series of perturbation
theory.
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Appendix A. Solution of the equation N̂F = R

The operators N̂(a) and N̂(b) on the left-hand sides of (3.2) and (3.3) differ by the
last term only; therefore, we consider the equation

N̂F ≡
{[

∂

∂τ
+ (u′cY − c1)

∂

∂x

]
∂

∂Y
− βu′c ∂∂x

}
F = R, 0 < β < 1,

which is their generalization. For the lth harmonic (R, F ∼ eilkx)

N̂ ≡ N̂l =

[
∂

∂τ
+ ilk(u′cY − c1)

]
∂

∂Y
− iβlku′c.

If l = 0, the solution of the equation N̂lF = R is determined by a direct integration,
and all cases l 6= 0 are brought to l = 1 by substitution lk = q.

A.1. Homogeneous equation N̂1G = 0

On performing a Fourier-transform in τ:

G(τ) =

∫ ∞
−∞

dωg(ω)eiωτ, g(ω) =
1

2π

∫ ∞
−∞

dτG(τ)e−iωτ,

we obtain

zgY − βg = 0 and g = a(ω)zβ,

where z = Y − c1/u
′
c + ω/(ku′c), and A(τ) =

∫ ∞
−∞dω a(ω)eiωτ is an arbitrary function.

It is convenient to start a calculation of G with a calculation of GY :

GY = β

∫ ∞
−∞

dω a(ω)zβ−1eiωτ =
β

2π

∫ ∞
−∞

dt A(t)

∫ ∞
−∞

dω zβ−1eiω(τ−t).

Since all disturbances are advected by the flow, the value of GY at a given point
ξ = cτ is determined by events upstream (when t < τ) and are independent of events
downstream (t > τ). Passing on to a consideration of complex values of ω we see that
this condition requires analyticity of the integrand in the lower half-plane (Imω < 0).
A little rearrangement yields

GY =
β exp(iπβ/2)

2π(ku′c)β−1

(
1− e−2iπβ

)
Γ (β)

∫ ∞
0

dt t−βA(τ−t)e−ik(u′cY−c1)t

=
Γ (β + 1) exp(iπβ/2)

2π(ku′c)β−1

∫
C

dt t−βA(τ− t)e−ik(u′cY−c1)t,

where Γ (z) is the Euler’s gamma-function (Abramowitz & Stegun 1964), and the
contour C is shown in figure 7(a). Upon integrating over Y we obtain

G(Y , τ) =
Γ (β + 1) exp[iπ(β + 1)/2]

2π(ku′c)β

∫
C

dt t−β−1A(τ− t)e−ik(u′cY−c1)t. (A 1)

In the lower half-plane (ImY 6 0) G is analytic, has the asymptotic representation
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as |Y | → ∞
G = A(τ)Y β − β

u′c

(
c1 +

i

k

d

dτ

)
AY β−1 + O(Y β−2) (A 2)

and tends to zero when τ → −∞ (if A(τ) → 0). In the upper half-plane G(Y ) has
singularities.

A.2. Equation N̂1F = R

In the ω-representation

zfY − βf = − ir

ku′c
, f = − izβ

ku′c

∫ Y

−∞
ds r(s, ω)

zβ+1
. (A 3)

If we pass on to the τ-representation, a simple calculation gives

F =
ieiπβ

2π

∫ ∞
0

dt

∫ ∞
0

ds R(Y − s, τ− t)e−ik(u′cY−c1)t

∫
L

dv vβ(1− v)−β−1eiku′cstv

=

∫ ∞
0

dt

∫ ∞
0

ds R(Y − s, τ− t)e−ik(u′cY−c1)tΦ(1 + β, 1; iku′cst) (A 4)

where Φ(a, c; z) is a Kummer’s confluent hypergeometric function (Erdelyi 1953), and
the contour L is shown in figure 7(b).

This is a particular solution of the non-homogeneous equation. To obtain a general
solution, it is necessary to add an arbitrary solution (A 1) of the homogeneous
equation.

A.3. Asymptotic representation

If R → 0 when Y → ±∞, then the asymptotic representation of the particular solution
F when Y → −∞ is determined by the behaviour of R as Y → −∞. When Y → +∞,
from (A 3) we have

f = − izβ

ku′c

∫ ∞
−∞

dY r(Y ,ω)

zβ+1
+ O(Y β−1),

and upon passing on to the τ-representation, we obtain

F =
(ku′cY )βeiπβ/2

Γ (1+β)

∫ ∞
−∞

dY

∫ ∞
0

dt tβR(Y , τ− t)e−ik(u′cY−c1)t + O(Y β−1). (A 5)

The general solution, however, has the obvious asymptotic representation

F = C±(τ)Y β + O(Y β−1),

C+(τ)− C−(τ) =
(ku′c)βeiπβ/2

Γ (1 + β)

∫ ∞
−∞

dY

∫ ∞
0

dt tβR(Y , τ− t)e−ik(u′cY−c1)t. (A 6)

Note that if R → 0 as |Y | → ∞ and is analytic in the lower half-plane (ImY < 0),
then C+ = C−.

If R is not localized (i.e. does not tend to zero when Y → ±∞), a calculation of
the asymptotic expansions calls for a special consideration. By way of example let us
consider a problem with important implications for this study:

N̂1F = iku′cGµ, (A 7)

where Gµ is obtained from (A 1) by substituting µ for β. If µ 6= β, then, it is easy to
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see that

N̂1Gµ = −iku′c(β − µ)Gµ, and F =
Gµ

µ− β . (A 8)

The asymptotic expansion of F immediately follows from (A 2). If µ = β, it can be
readily seen that

F = −Γ (β + 1) exp[iπ(β + 1)/2]

2π(ku′c)β

∫
C

dt t−β−1 ln tA(τ− t)e−ik(u′cY−c1)t. (A 9)

We wish to point out in conclusion that results for an arbitrary l 6= 0 are obtained
by substituting of lk for k.

Appendix B. Kernels of the evolution equations (3.25)–(3.27)
This Appendix is available from the Journal of Fluid Mechanics Editorial Office.

Appendix C. Some details concerning q+ and q−
To obtain a general solution of the non-homogeneous linear equation, it is necessary

to add to its particular solution a general solution of the homogeneous equation. The
last term in (2.12) represents the inner (y → yc) expansion of the solutions g±2 of the
(homogeneous) Taylor–Goldstein equation for the second harmonic,[

d2

dy2
+

JNr(y)

(u− c)2
− u′′

u− c −
(2ωN)2

c2

]
g±2 = 0. (C 1)

The function g+
2 (g−2 ) is defined for y > yc (y < yc) and is bounded when

y → +∞ (y → −∞). As y → yc, the functions g±2 have the expansions

g±2 = d±1 |s|α + d±2 |s|1−α + · · · , s = y − yc (C 2)

with the real coefficients d±1 and d±2 . Since the non-trivial solution of (C 1) exists
both to the right and left of yc, in each of the pairs (d+

1 , d
+
2 ) and (d−1 , d−2 ) at least

one of the numbers is non-zero. In the general case all four numbers are non-zero;
then a comparison of (C 2) with the last term in (2.12) shows that (we assume that
arg s = −π when y < yc)

q+ = d+
1 /d

+
2 , q− = −(d−1 /d

−
2 )e2iπα. (C 3)

Consider the cases where singularities arise in (3.15) and/or (C 3).
(a) If q+ and q− are finite and are both non-zero, the singularity in (3.15) appears

when q+ = q−. This equality is possible (and, as will be shown in what follows,
necessary) if only α = 1

2
. When α = 1

2
, however, g±2 have the inner expansions (see

(2.7) in Paper I)

g±2 = |s|1/2(q̃± + ln |s|/2) + · · · .
For it to be the limit of (C 2) when α→ 1

2
, it is necessary that

d±1 = −(1− 2α)−1 + 1
2
q̃± + O(1− 2α), d±2 = (1− 2α)−1 + 1

2
q̃± + O(1− 2α),

or

q+ = −1 + (1− 2α)q̃+ + O[(1− 2α)2], q− = −1 + (1− 2α)(q̃− + iπ) + O[(1− 2α)2].
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It is evident that when α→ 1
2

q+ − q− = (1− 2α)(q̃+ − q̃− − iπ) + O[(1− 2α)2]

necessarily tends to zero, but ∆ = q̃+ − q̃− − iπ 6= 0, so that

C(τ) =
2(M+ −M−)

q̃+ − q̃− − iπ

(cf. (3.21) in Paper I).
(b) The singularity in (3.15) also appears if d+

1 = d−1 = 0 (then q+ = q− = 0) or
d+

2 = d−2 = 0 (then q+ − q− is not defined). In either case the second harmonic itself
is a neutral mode, and the main nonlinear process will be not the wave self-action
considered in this paper but the resonant interaction of the fundamental and the
second harmonic (or, in more conventional terminology, the harmonic–subharmonic
interaction, see, for example, Collins & Maslowe 1988). Note that if the stability
boundary is as simply structured as in the Drazin, Holmboe and (2.7a, b) models,
then α varies along it monotonically, and only the case d+

1 = d−1 = 0 (q+ = q− = 0) is
possible. This is realized in Drazin’s model when ω2

N = 1
5
, JN = 4

25
and in Holmboe’s

model when ωN = 1
3

and JN = 2
9
, but it is not realized in (2.7a, b) when D 6= 0 because

of the dependence of the phase velocity c on ω.
(c) Finally, one of the coefficients d±2 , for example, d+

2 , can become zero. In the limit

d+
2 → 0 we obtain q+ → ∞, b±2 = 0, so that M− = 0, C(τ) = 0 and Φ

(3)
2 = 0, but

M+ = b+
2 q

+ remains finite and Ψ
(3)
2 is matched to the outer solution at an arbitrary

(M+ −M−) jump without generating Φ. It may be that Φ 6= 0 would appear on the
main sequence later, when matching to the outer solution, say, O(ε4µ4α−8) of the third
harmonic.

Appendix D. On the solutions of nonlinear evolution equations in the
unsteady CL regime

D.1. Cubic nonlinearity

Consider an NEE with a cubic nonlinearity of the form (cf. (3.25) and (3.26))

dA

dx
= γLA+ be−iχ

∫ ∞
0

ds sλ−1

∫ 1

0

dσ σµ−1G(σ)A(x− s)A(x− σs)A(x− s− σs), (D 1)

in which b > 0, λ > 0, µ > 0, |χ| 6 π, the kernel G(σ) is real, with G(0) = g0 6= 0,
and the integral

I0 ≡
∫ ∞

0

ds sλ−1

(1 + s)(λ+1)/2

∫ 1

0

dσ σµ−1G(σ)

[(1 + σs)(1 + s+ σs)](λ+1)/2
> 0. (D 2)

For the numerical solution with the ‘initial’ condition (4.1), it is convenient to recast
(D 1) in a ‘universal’ form by passing to a normalized amplitude C:

dC

dT
= e−iχ

∫ ∞
0

dt tλ−1e−t
∫ 1

0

dσ σµ−1G(σ)

(1 + σ)λ
C(T e−t/(1+σ))C(T e−σt/(1+σ))C(T e−t),

C(0) = 1,

 (D 3)

where

A(x) = A0C(T )eγLx, T =
bA2

0

(2γL)λ+1
e2γLx, t = 2γL(1 + σ)s.
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Let us note in passing that because of a rapid (explosive) growth of the solutions
of (D 3), when representing them in graphical form it is convenient to introduce a
somewhat different amplitude function

C̃(T ) =
C(T ) ln(1 + |C(T )|)
|C(T )| ln 2

,

which is used in figures 11(b–e).
At the nonlinear stage of evolution, the linear term on the right-hand side of (D 1)

becomes small by comparison with the nonlinear term, and it can be neglected by
formally putting γL = 0. In this case (D 1) has an exact analytic solution of the
explosive form

A = B(x0 − x)−a+iβ, a =
λ+ 1

2
, (D 4)

in which the constant β and B are determined from the equation

a− iβ = b|B|2e−iχ

∫ ∞
0

ds sλ−1

(1+s)a

∫ 1

0

dσ σµ−1G(σ)

[(1+σs)(1+s+σs)]a
exp

[
iβ ln

(1+s)(1+σs)

1+s+σs

]
. (D 5)

In view of the inequality (D 2) when χ = 0 equation (D 5) has the solution β = 0.
(If, however, I0 < 0, then β = 0 at χ = ±π.) By and large β(χ) is an odd function: if
β(χ) = f(χ) is the solution of (D 5), then β(−χ) = −f(χ) is also the solution. When
β(χ) is considered on the entire real axis χ, it becomes evident that β = f(χ + 2πn)
at any integer n will also be the solution of (D 5). In particular, β(2πn) = 0, and β(χ)
does not have any other zeros. The function that has such properties is normally
multiple-valued, in some domains of χ at least. In fact, if (D 5) when χ = π has the
solution β = β1 (note that β1 6= 0), then it also has the solution β = −β1, and β(χ)
here is two-valued at least (and in the general case it can also take several pairs of
values, ±βi).

To study β(χ), it is convenient to transform (D 5). Multiplying by (a + iβ) and
separating the real and imaginary parts yields

I1(β, χ)≡
∫ ∞

0

ds sλ−1

(1 + s)a

∫ 1

0

dσ σµ−1G(σ)

[(1+σs)(1+s+σs)]a
sin

[
β ln

(
1+

σs2

1+s+σs

)
+χ0−χ

]
= 0,

I2(β, χ)≡
∫ ∞

0

ds sλ−1

(1 + s)a

∫ 1

0

dσ σµ−1G(σ)

[(1+σs)(1+s+σs)]a
cos

[
β ln

(
1+

σs2

1+s+σs

)
+χ0−χ

]
> 0,

|B|2 =
(a2 + β2)1/2

bI2(β, χ)
, χ0 = arctan

β

a
; a =

λ+ 1

2
. (D 6)

Upon calculating the derivative

dβ

dχ
=
I2(β, χ)

I3(β, χ)
, (D 7)

I3(β, χ)=

∫ ∞
0

ds sλ−1

(1+s)a

∫ 1

0

dσ σµ−1G(σ)

[(1+σs)(1+s+σs)]a

[
ln

(
1 +

σs2

1+s+σs

)
+

a

a2+β2

]

× cos

[
β ln

(
1 +

σs2

1+s+σs

)
+ χ0 − χ

]
,

one can see that each branch of β(χ) is monotonic, and it starts and ends at singular
points where either I2 = 0 or I3 = 0 (or both).
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We restrict the discussion to the simplest case where at the ends of each branch
|β| → ∞ (the author is unaware of any other cases in specific evolution problems).
The main branch (that passes through the origin of the coordinates) represents com-
prehensively all properties of the complete solution of (D 5) because other branches
are obtained from this branch through a shift in χ by 2π. Moreover, in view of the
oddness of β(χ) it will suffice to consider β > 0 only.

When β → +∞ the integral I(β, χ) = I2 + iI1 tends to zero, the region σs2 = O(β−1)
makes the main contribution to it, and its order depends on the parameters λ and µ.
Straightforward but somewhat unwieldy calculations give

I(β, χ) = β−λ/2
Γ ( 1

2
λ)

2

∫ 1

0

dσ σµ−λ/2−1G(σ) exp

{
i

[
π

2

(
λ

2
+1

)
−χ
]}

+O(β−µ+β−(λ+1)/2)

(D 8a)
when λ < 2µ,

I(β, χ) = β−µ
µ[Γ (µ)]2Γ (λ−2µ)

Γ (λ−µ+1)
g0 exp

{
i
[π

2
(µ+1)−χ

]}
+ O(β−λ/2+β−µ−1) (D 8b)

when λ > 2µ, and

I(β, χ) = β−µ
Γ (µ)

2

{
g0

[
ln β − 2C − 3ψ(µ)− 2

µ
− iπ

2

]
−
∫ 1

0

dσ
dG(σ)

dσ
ln σ

}
× exp

{
i
[

1
2
π(µ+ 1)− χ]}+ O(β−µ−1/2) (D 8c)

when λ = 2µ. Here C = 0.577216 is the Euler’s constant and ψ(z) = d lnΓ (z)/dz. Note
that arg I(β, χ) is defined not only by the expression appearing in the corresponding
exponential, but also by the sign of

I00 =

∫ 1

0

dσσµ−λ/2−1G(σ)

in (D 8a) and of g0 in (D 8b, c). Considering that along the branch β = β(χ) the integral
I(β, χ) must remain real and positive, we find that β → +∞ when χ→ χ+ + 2πn− 0,
where

χ+ =


1
2
π(µ+ sgn g0), λ > 2µ,

1
2
π
(

1
2
λ+ sgn I00

)
, λ < 2µ.

(D 9)

D.2. Quintic nonlinearity

Consider NEE of the form (cf. (3.27))

dA

dx
= γLA+ be−iχ

∫ ∞
0

dt tλ−1

∫ ∞
0

ds sµ−1

∫ 1

0

du uν−1

∫ 1

0

dv G(u, v)A(x−t−s)

×A(x−t−us)A(x−t−uvs)A(x−t−(1+u+uv)s)A(x−2t), (D 10)

in which b > 0, λ > 0, µ > 0, ν > 0, |χ| 6 π, the kernel G(u, v) is real, with G(0, v) ≡/ 0,
and the integral

I0 =

∫ ∞
0

ds sµ−1

(1+s)a

∫ 1

0

du uν−1

∫ 1

0

dv G(u, v)

[(1+us)(1+uvs)(1+s+us+uvs)]a
> 0, (D 11)

where a = (λ+µ+1)/4 is the exponent in the law of explosive growth (4.2) (cf. (D 4)).
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For the numerical solution with the ‘initial’ condition (4.1), NEE (D 10) is also
conveniently recast in a ‘universal’ form:

dC

dT
= T e−iχ

∫ ∞
0

dt tλ−1e−t
∫ ∞

0

ds sµ−1e−s
∫ 1

0

du uν−1

∫ 1

0

dv G(u, v)

(1+u+uv)µ
C
(
T e−t1−s1

)
×C (T e−t1−us1

)
C
(
T e−t1−uvs1

)
C
(
T e−t1−s

)
C
(
T e−2t1

)
,

C(0) = 1,

where

A(x) = A0C(T )eγLx, T =
b1/2A2

0

3λ/2(2γL)2a
e2γLx, t1 =

t

3
, s1 =

s

1+u+uv
.

The function β(χ) has the same properties (multivaluedness, oddness, and 2π-perio-
dicity) as in the case of a cubic nonlinearity. For determining it, it is necessary to
solve the system (cf. (D 6)):

I1 ≡
∫ ∞

0

ds sµ−1

(1+s)a

∫ 1

0

du uν−1

∫ 1

0

dv G(u, v) sin

[
β ln

(1+s)(1+us)(1+uvs)

1+s+us+uvs
+χ0−χ

]
[(1+us)(1+uvs)(1+s+us+uvs)]a

= 0,

I2 ≡
∫ ∞

0

ds sµ−1

(1+s)a

∫ 1

0

du uν−1

∫ 1

0

dv G(u, v) cos

[
β ln

(1+s)(1+us)(1+uvs)

1+s+us+uvs
+χ0−χ

]
[(1+us)(1+uvs)(1+s+us+uvs)]a

> 0,

χ0 = arg J0 + arctan
β

a
; J0 =

∫ 1

0

ds sλ−1(1−s)a−iβ

(1+s)a+iβ
. (D 12)

Proceeding in the same manner as in the case of cubic nonlinearity one can show that
β → +∞ when χ→ χ+ + 2πn, where

χ+ =


1
2
π
(

1
2
λ+ ν + sgnJ1

)
, µ > 2ν,

1
2
π
(

1
2
(λ+ µ) + sgnJ2

)
, µ < 2ν.

(D 13)

J1 =

∫ 1

0

dv G(0, v)

(1+v)ν
, J2 =

∫ 1

0

du uν−µ/2−1

∫ 1

0

dv G(u, v)

(1+v+uv)µ/2
.

For the nonlinearities considered in this paper, using (D 9) and (D 13) we find:
in NEE (3.25) λ = 2µ = 8− 4α and g0 < 0, hence χ+ = (3/2− α)π;
in NEE (3.26) λ = 4− 4α, µ = 3− 2α and I00 > 0, hence χ+ = (3/2− α)π;
in NEE (3.27) λ = 2− α, µ = 6− 3α, ν = 5− α and J2 > 0, hence χ+ = (5/2− α)π.
If the nonlinearity is non-dissipative (NEE (3.26) or (3.27)), the numerically inferred
dependence β(χ) (see figure 10b, c) accords well with the theory outlined above, and
the main branch tends to +∞ when χ→ χ+ − 0.

In the case of the dissipative nonlinearity, the picture is more complicated. When
α = α∗ = 0.615, the integral involved in (D 2) becomes zero. The inequality (D 2)
could be satisfied through a change of the common sign of the kernel when passing
through α = α∗; in this case, however, the α-dependence of both the kernel itself and
the phase χ ceases to be continuous. We chose to retain the continuous dependence
on α, and we defined the kernel Gν(σ) such that I0 > 0 when 0 6 α < α∗ and I0 < 0
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when α∗ < α < 1. This being so, on the main branch β(χ) = 0 when χ = 0 if α < α∗
and when χ = π if α > α∗. Furthermore, at any α the main branch tends to +∞ not
when χ → χ+ but when χ → χ+ + 2π. These characteristics are all evident in figure
10(a).
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